[9] GAO J, MA R H, ZHAO J J, et al. Non-bridging oxygen dependent redox and spectroscopic properties of Cu species in phosphosilicate glasses[J]. J Alloys Compd, 2016, 664: 331-337.
[10] LIN C G, BOCKER C, RSSEL C. Nanocrystallization in oxyfluoride glasses controlled by amorphous phase separation[J]. Nano Lett, 2015, 15(10): 6764-6769.
[11] WAKAMATSU M, TAKEUCHI N, NAGAI H, et al. Chemical states of copper and tin in copper glazes fired under various atmospheres[J]. J Am Ceram Soc, 1989, 72(1): 16-19.
[13] WANG C, LIU K, CHEN X, et al. Influence of the thickness of the copper glaze layer on the color and its formation mechanism[J]. Mater Res Express, 2022, 9(8): 085001.
[14] SILIGARDI C, MONTECCHI M, MONTORSI M, et al. Lead free Cu—containing frit for modern metallic glaze[J]. J Am Ceram Soc, 2009, 92(11): 2784-2790.
[15] FRBERG L, KRONBERG T, HUPA leena, et al. Influence of firing parameters on phase composition of raw glazes[J]. J Eur Ceram Soc, 2007, 27(2-3): 1671-1675.
[16] REINOSA J J, RUBIO-MARCOS F, SOLERA E, et al. Sintering behaviour of nanostructured glass-ceramic glazes[J]. Ceram Int, 2010, 36(6): 1845-1850.
[18] RICCIARDI P, COLOMBAN P, TOURNI A, et al. A non-invasive study of Roman Age mosaic glass tesserae by means of Raman spectroscopy[J]. J Archaeol Sci, 2009, 36(11): 2551-2559.
[19] YADAV A K, SINGH P. A review of the structures of oxide glasses by Raman spectroscopy[J]. RSC Adv, 2015, 5(83): 67583-67609.
[20] HSIEH P Y. Thermophysical modeling of raw glaze liquidus temperature and viscosity[J]. Int J Appl Glass Sci, 2022, 13(2): 199-210.
[21] WANG Y, YU S H, TONG M H, et al. Deciphering the formation mechanism of ancient Jun wares copper red and blue glazes[J]. J Cult Herit, 2021, 48: 29-35.
[22] MILLER L A, BERRY A J, O'NEILL H St C, et al. The effect of composition, temperature and pressure on the oxidation state and coordination environment of copper in silicate melts[J]. Geochim Cosmochim Acta, 2024, 364: 129-147.