• Photonics Research
  • Vol. 11, Issue 12, 2202 (2023)
Ye Xiang1,2,3,†, Yongping Zhai1,†, Jiazhi Yuan2,3, Ke Ren2,3..., Xuchao Zhao2,3, Dongda Wu2,3, Junqiao La2,3, Yi Wang2,3 and Wenxin Wang2,3,*|Show fewer author(s)
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
  • 3Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
  • show less
    DOI: 10.1364/PRJ.503656 Cite this Article Set citation alerts
    Ye Xiang, Yongping Zhai, Jiazhi Yuan, Ke Ren, Xuchao Zhao, Dongda Wu, Junqiao La, Yi Wang, Wenxin Wang, "Amplified spontaneous emission at the band edges of Ag-coated Al nanocone array," Photonics Res. 11, 2202 (2023) Copy Citation Text show less
    References

    [1] M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. V. Veldhoven, E. J. Geluk, F. Karouta, Y. S. Oei, R. Nötzel, C.-Z. Ning, M. K. Smit. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express, 17, 11107-11112(2009).

    [2] R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang. Plasmon lasers at deep subwavelength scale. Nature, 461, 629-632(2009).

    [3] M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner. Demonstration of a spaser-based nanolaser. Nature, 460, 1110-1112(2009).

    [4] S. Yang, J. C. Ndukaife. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. Light Sci. Appl., 12, 188(2023).

    [5] J. Yim, N. Chandra, X. Feng, Z. Gao, S. Wu, T. Wu, H. Zhao, N. M. Litchinitser, L. Feng. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight, 2, 16(2022).

    [6] A. K. Yang, Z. Y. Li, M. P. Knudson, A. J. Hryn, W. J. Wang, K. Aydin, T. W. Odom. Unidirectional lasing from template-stripped two-dimensional plasmonic crystals. ACS Nano, 9, 11582-11588(2019).

    [7] J. Y. Sae, C. H. Kim, W. Zhou, M. D. Huntingtun, D. T. Co, M. R. Wasielewski, T. W. Odom. Plasmonic bowtie nanolaser array. Nano Lett., 12, 5769-5774(2012).

    [8] J. Bellessa, C. Bonnand, J. C. Plenet. Strong coupling between surface plasmons and excitons in an organic semiconductor. Phys. Rev. Lett., 93, 036404(2004).

    [9] V. Pacheco-Peña, T. Hallam, N. Healy. MXene supported surface plasmons on telecommunications optical fibers. Light Sci. Appl., 11, 22(2022).

    [10] V. G. Kravets, A. V. Kabashin, W. L. Barnes, A. N. Grigorenko. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [11] S. Zou, N. Janel, G. C. Schatz. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys., 120, 10871-10875(2004).

    [12] S. Zou, G. C. Schatz. Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array. J. Chem. Phys., 121, 12606-12612(2004).

    [13] M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett., 31, 3022-3024(2006).

    [14] M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev. The effect of gain and absorption on surface plasmons in metal nanoparticles. Appl. Phys. B, 86, 455-460(2007).

    [15] A. H. Schokker, A. F. Koenderink. Lasing at the band edges of plasmonic lattices. Phys. Rev. B, 90, 155452(2014).

    [16] A. Yang, T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, T. W. Odom. Real-time tunable lasing from plasmonic nanocavity array. Nat. Commun., 6, 6939(2015).

    [17] M. Wang, G. Hu, S. Chand, M. Cotrufo, Y. Abate, K. Watanabe, T. Taniguchi, G. Grosso, C. Qiu, A. Alù. Spin-orbit-locked hyperbolic polariton vortices carrying reconfigurable topological charges. elight, 2, 12(2022).

    [18] L. Novotny, B. Hecht. Principles of nano-optics. Phys. Today, 1, 41-67(2007).

    [19] E. M. Purcell. Spontaneous emission probabilities at radio frequencies. Phys. Rev., 69, 37-38(1946).

    [20] M. J. H. Tan, J. Park, F. Freire-Fernández, J. Guan, X. G. Juarez, T. W. Odom. Lasing action from quasi-propagating modes. Adv. Mater., 34, 2203999(2022).

    [21] J. Guan, J. Hu, Y. Wang, M. J. H. Tan, G. C. Schatz, T. W. Odom. Far-field coupling between moiré photonic lattices. Nat. Nanotechnol., 18, 514-520(2023).

    [22] Y. Wang, F. Lv, J. Chen, Y. Huang, S. He, W. Xu, S. Xu, W. Wang. Evolution of high symmetry points of photonic alumina superlattices in a lithography-free approach. ACS Appl. Mater. Interfaces, 13, 47262-47271(2021).

    [23] F. Lv, J. La, S. He, Y. Liu, Y. Huang, Y. Wang, W. Wang. Off-angle amplified spontaneous emission of upconversion nanoparticles by propagating lattice plasmons. ACS Appl. Mater. Interfaces, 14, 54304-54312(2022).

    [24] Y. Huang, F. Lv, J. Chen, S. He, Z. Wang, J. La, D. Wu, R. Cong, Y. Wang, W. Wang. Wafer-scale plasmonic metal-dielectric-metal structural color featuring high saturation and low angular dependence. Nanotechnology, 33, 135302(2022).

    [25] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131-314(2005).

    [26] R. Guo, T. K. Hakala, P. Toermae. Geometry dependence of surface lattice resonances in plasmonic nanoparticle array. Phys. Rev. B, 95, 155423(2017).

    Ye Xiang, Yongping Zhai, Jiazhi Yuan, Ke Ren, Xuchao Zhao, Dongda Wu, Junqiao La, Yi Wang, Wenxin Wang, "Amplified spontaneous emission at the band edges of Ag-coated Al nanocone array," Photonics Res. 11, 2202 (2023)
    Download Citation