• Chinese Journal of Lasers
  • Vol. 50, Issue 23, 2301012 (2023)
Keshuai Wu, Chunhua Wang*, and Xiang Gu
Author Affiliations
  • Key Laboratory of Specially Fiber Optics and Optical Access Networks, School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/CJL230582 Cite this Article Set citation alerts
    Keshuai Wu, Chunhua Wang, Xiang Gu. Orthogonal Polarization Interleaving Multi‑wavelength Brillouin Random Fiber Laser[J]. Chinese Journal of Lasers, 2023, 50(23): 2301012 Copy Citation Text show less
    References

    [1] de Matos C J S, de S Menezes L, Brito-Silva A M et al. Random fiber laser[J]. Physical Review Letters, 99, 153903(2007).

    [2] Liu C C, Gao C C, Yang H et al. Stimulated Brillouin scattering and its application in integrated optical gyro[J]. Chinese Journal of Lasers, 49, 1906004(2022).

    [3] Bravo M, de Miguel Soto V, Cayetano A O et al. Fully switchable multi-wavelength fiber lasers based on random distributed feedback for sensors interrogation[J]. Journal of Lightwave Technology, 33, 2598-2604(2015).

    [4] Ajiya M, Mahdi M A, Al-Mansoori M H et al. Seamless tuning range based-on available gain bandwidth in multiwavelength Brillouin fiber laser[J]. Optics Express, 17, 5944-5952(2009).

    [5] Xie H, Sun J Q, Feng D Q et al. Compact multiwavelength Brillouin fiber laser by utilizing EDF as hybrid gain media[J]. IEEE Photonics Journal, 7, 1504110(2015).

    [6] Yang Q, Zhou Z Z, Liu K et al. Multi-wavelength Brillouin random fiber laser with switchable frequency interval[J]. Chinese Journal of Lasers, 49, 1101003(2022).

    [7] Al-Alimi A W, Cholan N A, Yaacob M H et al. Wide bandwidth and flat multiwavelength Brillouin-erbium fiber laser[J]. Optics Express, 25, 19382-19390(2017).

    [8] Li Y H, Chen S Z, Guo H. Generation and application of multi-wavelength optical carrier based on stimulated Brillouin scattering[J]. Chinese Journal of Lasers, 49, 1906003(2022).

    [9] Pang M, Bao X Y, Chen L et al. Frequency stabilized coherent Brillouin random fiber laser: theory and experiments[J]. Optics Express, 21, 27155-27168(2013).

    [10] Pang M, Bao X Y, Chen L A. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser[J]. Optics Letters, 38, 1866-1868(2013).

    [11] Tehranchi A, Kashyap R. Theoretical investigations of power fluctuations statistics in Brillouin erbium-doped fiber lasers[J]. Optics Express, 27, 37508-37515(2019).

    [12] Zhou Z C, Chen L A, Bao X Y. Mode characteristic manipulation of random feedback interferometers in Brillouin random fiber laser[J]. Optics Letters, 45, 678-681(2020).

    [13] Zhang L A, Xu Y P, Gao S et al. Linearly polarized low-noise Brillouin random fiber laser[J]. Optics Letters, 42, 739(2017).

    [14] Zhang L A, Wang C, Li Z Y et al. High-efficiency Brillouin random fiber laser using all-polarization maintaining ring cavity[J]. Optics Express, 25, 11306-11314(2017).

    [15] Zhou Z C, Chen L A, Bao X Y. High efficiency Brillouin random fiber laser with replica symmetry breaking enabled by random fiber grating[J]. Optics Express, 29, 6532-6541(2021).

    [16] Yin R, Hu L, Wu G L et al. Brillouin laser based on high Q fiber ring resonator[J]. Acta Optica Sinica, 42, 1914002(2022).

    [17] Zhou X F, Liu Y Q, Yuan S. A novel double-Brillouin-frequency spaced multi-wavelength Brillouin erbium-doped fiber laser based on non-linear amplified fiber loop mirror[J]. Optik, 125, 5218-5220(2014).

    [18] Al-Alimi A W, Al-Mansoori M H, Sarmani A R et al. A wide flat triple Brillouin frequency spacing multiwavelength fiber laser assisted by four wave mixing[J]. Journal of Lightwave Technology, 38, 6648-6654(2020).

    [19] Gan G K W, Yeo K S, Adikan F R M et al. Four-wave-mixing-assisted Brillouin fiber laser with double-Brillouin-frequency spacing[J]. Optical Fiber Technology, 21, 198-201(2015).

    [20] Wang X R, Yang Y F, Liu M et al. Frequency spacing switchable multiwavelength Brillouin erbium fiber laser utilizing cascaded Brillouin gain fibers[J]. Applied Optics, 55, 6475-6479(2016).

    [21] Zadok A, Zilka E, Eyal A et al. Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers[J]. Optics Express, 16, 21692-21707(2008).

    [22] Wang C H, Zhang Y L, Liu G et al. Orthogonal polarization switchable lasing based on axial polarization pulling of SBS in polarization-maintaining fiber[J]. Optics Express, 26, 28385-28395(2018).

    [23] Galtarossa A, Palmieri L, Schiano M et al. Statistical characterization of fiber random birefringence[J]. Optics Letters, 25, 1322-1324(2000).

    [24] Cao S, Zhang M. Polarized and birefringence-dependent stimulated Brillouin scattering in single mode fiber[J]. Optik, 131, 374-382(2017).

    [25] Wang C H, Zhang Q W, Mou C B et al. Spectral polarization spreading behaviors in stimulated Brillouin scattering of fibers[J]. IEEE Photonics Journal, 9, 6100111(2017).

    [26] Wang C H, Gao R J, Fang N et al. Orthogonal polarization clamping and interleaving in polarization maintaining fiber random Brillouin lasers[J]. Optics Communications, 509, 127697(2022).

    [27] Ning J X, Wang C H, Fang N et al. Brillouin random fiber laser with orthogonal polarization clamping[J]. Chinese Journal of Lasers, 50, 1001002(2023).

    Keshuai Wu, Chunhua Wang, Xiang Gu. Orthogonal Polarization Interleaving Multi‑wavelength Brillouin Random Fiber Laser[J]. Chinese Journal of Lasers, 2023, 50(23): 2301012
    Download Citation