• Acta Physica Sinica
  • Vol. 68, Issue 11, 113103-1 (2019)
Bo-Min Zuo1, Jian-Mei Yuan2、*, Zhi Feng2, and Yu-Liang Mao1、*
Author Affiliations
  • 1School of Physics and Optoelectronic, Xiangtan University, Xiangtan 411105, China
  • 2School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
  • show less
    DOI: 10.7498/aps.68.20182266 Cite this Article
    Bo-Min Zuo, Jian-Mei Yuan, Zhi Feng, Yu-Liang Mao. First-principles study of five isomers of two-dimensional GeSe under in-plane strain[J]. Acta Physica Sinica, 2019, 68(11): 113103-1 Copy Citation Text show less
    Top view and side views of relaxed structures of five isomers of GeSe monolayer (in the figures, a and b denote the lattice constants, respectively): (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe.单层GeSe的5种同分异构弛豫后结构的俯视图和侧视图(图中a和b表示晶格常数) (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe
    Fig. 1. Top view and side views of relaxed structures of five isomers of GeSe monolayer (in the figures, a and b denote the lattice constants, respectively): (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe. 单层GeSe的5种同分异构弛豫后结构的俯视图和侧视图(图中ab表示晶格常数) (a) α-GeSe; (b) β-GeSe; (c) γ-GeSe; (d) δ-GeSe; (e) ε-GeSe
    Band structures of α-GeSe monolayer under applied strains: (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%.单层α-GeSe在应变调控下能带结构 (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%
    Fig. 1. Band structures of α-GeSe monolayer under applied strains: (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%. 单层α-GeSe在应变调控下能带结构 (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%
    Absorption coefficients for five isomers in GeSe monolayer.5种GeSe单层同分异构体的吸收系数
    Fig. 2. Absorption coefficients for five isomers in GeSe monolayer.5种GeSe单层同分异构体的吸收系数
    Optimized structures of ε-GeSe monolayer under 20% tensile strain, respectively: (a) Armchair direction; (b) zigzag direction; (c) biaxial direction.ε-GeSe单层施加20%拉伸应变下优化后的结构 (a) 扶手椅方向; (b) 锯齿形方向; (c) 双轴方向
    Fig. 2. Optimized structures of ε-GeSe monolayer under 20% tensile strain, respectively: (a) Armchair direction; (b) zigzag direction; (c) biaxial direction.ε-GeSe单层施加20%拉伸应变下优化后的结构 (a) 扶手椅方向; (b) 锯齿形方向; (c) 双轴方向
    Variation of band gap along with the applied in-plane strain (The square represents the strain along armchair (σx) direction, while the circle represents the strain along zigzag (σy) direction, the triangle represents the bi-axial (σxy) strain, the solid and hollow symbols denote the indirect and direct band gap, respectively)带隙随平面内应变的变化图(方块表示沿扶手椅(σx)方向的应变, 圆圈表示沿锯齿形(σy)方向的应变, 三角形代表双轴(σxy)应变, 实心和空心符号分别表示间接和直接带隙)
    Fig. 3. Variation of band gap along with the applied in-plane strain (The square represents the strain along armchair (σx) direction, while the circle represents the strain along zigzag (σy) direction, the triangle represents the bi-axial (σxy) strain, the solid and hollow symbols denote the indirect and direct band gap, respectively) 带隙随平面内应变的变化图(方块表示沿扶手椅(σx)方向的应变, 圆圈表示沿锯齿形(σy)方向的应变, 三角形代表双轴(σxy)应变, 实心和空心符号分别表示间接和直接带隙)
    Band structures of ε-GeSe monolayer under applied strains (σx, σy, σxy represent the strains along the armchair, zigzag and biaxial directions, respectively. The arrow represents the direction from the conduction band minimum (CBM) to the valence band maximum (VBM)): (a) σ= 0 (in the figure, arepresents the conduction band minimum of ε-GeSe, b represents the valence band point corresponding to the same path point of a, c is the valence band maximum of ε-GeSe, d is the conduction band point corresponding to the same path point of c); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%.应变调控下ε-GeSe单层的能带结构 (σx, σy和σxy分别表示沿扶手椅形、锯齿形和双轴方向的应变箭头表示导带最小值 (CBM)指向价带最大值 (VBM)的方向) (a) σ = 0 (图中a表示ε-GeSe的导带最小值, b表示与a相同路径点的价带点, c是ε-GeSe的价带最大值, d是与c的相同路径点的导带点); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%
    Fig. 4. Band structures of ε-GeSe monolayer under applied strains (σx, σy, σxy represent the strains along the armchair, zigzag and biaxial directions, respectively. The arrow represents the direction from the conduction band minimum (CBM) to the valence band maximum (VBM)): (a) σ= 0 (in the figure, arepresents the conduction band minimum of ε-GeSe, b represents the valence band point corresponding to the same path point of a, c is the valence band maximum of ε-GeSe, d is the conduction band point corresponding to the same path point of c); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%. 应变调控下ε-GeSe单层的能带结构 (σx, σyσxy分别表示沿扶手椅形、锯齿形和双轴方向的应变箭头表示导带最小值 (CBM)指向价带最大值 (VBM)的方向) (a) σ = 0 (图中a表示ε-GeSe的导带最小值, b表示与a相同路径点的价带点, c是ε-GeSe的价带最大值, d是与c的相同路径点的导带点); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%
    Isosurfaces of partial charge densities of monolayer ε-GeSe ((a), (b), (c), (d) are corresponding points to a, b,c andd in Fig. 4(a), respectively).单层ε-GeSe部分电荷密度的等值面 ((a), (b), (c), (d)分别对应于图4(a)中a, b, c和d所标注的点)
    Fig. 5. Isosurfaces of partial charge densities of monolayer ε-GeSe ((a), (b), (c), (d) are corresponding points to a, b,c andd in Fig. 4(a), respectively). 单层ε-GeSe部分电荷密度的等值面 ((a), (b), (c), (d)分别对应于图4(a)a, b, cd所标注的点)
    α-GeSeβ-GeSeγ-GeSe δ-GeSeε-GeSe
    a4.273.683.675.806.85
    b3.983.685.895.846.43
    h2.521.451.762.521.72
    |Eb|/eV·atom–14.144.124.114.134.08
    Eg/eV 1.142.301.771.581.78
    Table 1. Relaxed structural parameters of five isomers of GeSe monolayer (aandb are the lattice constants, respectively.h is the buckling height of GeSe; Eb is the bind energy per atom; Eg is the fundamental band gap).
    α-GeSeβ-GeSeγ-GeSe δ-GeSeε-GeSe
    E073.8839.5577.92151.22179.68
    Ef/i/meV 0.0370.0160.0410.0770.664
    Ef/i/E00.05%0.04%0.05%0.05%0.03%
    Table 2. Calculated results of vibration frequencies of five isomers of GeSe (E0 represents zero energy, Ef/i represents virtual frequency, Ef/i/E0 denotes virtual frequency occupies the proportion of zero energy).
    Strain/%d1d2d3θ1θ2Eg/eV
    σx2.682.512.6085.686.71.56 (ind.)
    –10σy2.602.582.5698.285.11.41 (ind.)
    σxy2.602.522.5289.677.80.85 (ind.)
    σx2.672.512.6087.487.21.61 (ind.)
    –8σy2.612.572.5797.185.81.55 (ind.)
    σxy2.602.522.5490.280.31.32 (ind.)
    σx2.672.522.6089.187.81.66 (ind.)
    –6σy2.612.562.5896.386.61.67 (ind.)
    σxy2.612.522.5690.882.81.71 (ind.)
    σx2.662.522.6090.988.31.72 (ind.)
    –4σy2.622.552.5995.587.51.77 (ind.)
    σxy2.622.532.5791.785.51.90 (ind.)
    σx2.652.532.6092.488.81.75 (ind.)
    –2σy2.632.552.5994.888.41.84 (ind.)
    σxy2.642.532.5992.787.41.89 (ind.)
    02.652.542.6094.189.31.78 (ind.)
    σx2.652.552.6095.889.71.75 (ind.)
    2σy2.672.542.6093.390.51.62 (ind.)
    σxy2.672.552.6095.891.31.62 (ind.)
    σx2.642.562.6097.290.21.66 (ind.)
    4σy2.692.542.6093.291.61.48 (ind.)
    σxy2.682.562.6098.092.61.50 (ind.)
    σx2.632.572.6199.090.21.60 (ind.)
    6σy2.712.542.6092.892.81.35 (ind.)
    σxy2.702.572.60100.293.71.40 (ind.)
    σx2.632.592.61100.890.41.51 (ind.)
    8σy2.742.542.6092.894.11.24 (ind.)
    σxy2.712.592.60102.694.91.30 (ind.)
    σx2.622.602.61103.589.91.44 (dir.)
    10σy2.772.542.5993.095.51.16 (ind.)
    σxy2.732.602.60105.196.11.19 (dir.)
    σx2.622.612.62105.590.01.37 (dir.)
    12σy2.802.542.5992.996.81.09 (ind.)
    σxy2.752.612.59107.797.61.00 (dir.)
    σx2.612.622.62108.289.41.32 (dir.)
    14σy2.842.532.5893.298.31.05 (ind.)
    σxy2.772.622.58110.399.40.84 (dir.)
    σx2.602.632.63110.889.01.28 (dir.)
    16σy2.872.532.5793.4100.01.03 (ind.)
    σxy2.782.642.57112.6101.70.67 (dir.)
    σx2.602.632.63113.188.81.24 (dir.)
    18σy2.922.522.5693.5102.00.98 (ind.)
    σxy2.792.652.55115.2103.70.63 (dir.)
    σx2.592.642.64115.688.31.21 (dir.)
    20σy2.962.512.5494.1103.80.94 (ind.)
    σxy2.722.702.54123.7108.10.99 (ind.)
    Table 3. Summary of the optimized geometric structures and energy gaps for ε-GeSe under in-plane strains along the armchair (σx), zigzag (σy) and biaxial (σxy) directions (Negative values of strain denote compress strains, while positive values denote tensile strains. d1, d2 and d3 (as shown in Fig. 1(e)) represent the distance between Ge and Se atoms, respectively. θ1 represents the θ(Ge-Se-Ge) bond angle. θ2 represents the θ(Se-Ge-Se) bond angle. Eg(eV) is the band gap under the corresponding strain,(ind.)is the indirect band gap, (dir.) is the direct band gap)
    Bo-Min Zuo, Jian-Mei Yuan, Zhi Feng, Yu-Liang Mao. First-principles study of five isomers of two-dimensional GeSe under in-plane strain[J]. Acta Physica Sinica, 2019, 68(11): 113103-1
    Download Citation