Bo-Min Zuo, Jian-Mei Yuan, Zhi Feng, Yu-Liang Mao. First-principles study of five isomers of two-dimensional GeSe under in-plane strain [J]. Acta Physica Sinica, 2019, 68(11): 113103-1

Search by keywords or author
- Acta Physica Sinica
- Vol. 68, Issue 11, 113103-1 (2019)

Fig. 1. Top view and side views of relaxed structures of five isomers of GeSe monolayer (in the figures, a and b denote the lattice constants, respectively): (a) α-GeSe; (b) β-GeSe; (c) γ -GeSe; (d) δ-GeSe; (e) ε-GeSe.
单层GeSe的5种同分异构弛豫后结构的俯视图和侧视图(图中a 和b 表示晶格常数) (a) α-GeSe; (b) β-GeSe; (c) γ -GeSe; (d) δ-GeSe; (e) ε-GeSe

Fig. 1. Band structures of α-GeSe monolayer under applied strains: (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%.
单层α-GeSe在应变调控下能带结构 (a) σ = 0; (b) σx = 2%; (c) σx = 7%; (d) σy = –8%; (e) σy = –1%; (f) σy = 8%; (g) σxy = –1%; (h) σxy = –6%; (i) σxy = 8%

Fig. 2. Absorption coefficients for five isomers in GeSe monolayer.5种GeSe单层同分异构体的吸收系数

Fig. 2. Optimized structures of ε-GeSe monolayer under 20% tensile strain, respectively: (a) Armchair direction; (b) zigzag direction; (c) biaxial direction.ε-GeSe单层施加20%拉伸应变下优化后的结构 (a) 扶手椅方向; (b) 锯齿形方向; (c) 双轴方向

Fig. 3. Variation of band gap along with the applied in-plane strain (The square represents the strain along armchair (σx ) direction, while the circle represents the strain along zigzag (σy ) direction, the triangle represents the bi-axial (σxy ) strain, the solid and hollow symbols denote the indirect and direct band gap, respectively)
带隙随平面内应变的变化图(方块表示沿扶手椅(σx )方向的应变, 圆圈表示沿锯齿形(σy )方向的应变, 三角形代表双轴(σxy )应变, 实心和空心符号分别表示间接和直接带隙)

Fig. 4. Band structures of ε-GeSe monolayer under applied strains (σx , σy , σxy represent the strains along the armchair, zigzag and biaxial directions, respectively. The arrow represents the direction from the conduction band minimum (CBM) to the valence band maximum (VBM)): (a) σ = 0 (in the figure, a represents the conduction band minimum of ε-GeSe, b represents the valence band point corresponding to the same path point of a , c is the valence band maximum of ε-GeSe, d is the conduction band point corresponding to the same path point of c ); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%.
应变调控下ε-GeSe单层的能带结构 (σx , σy 和σxy 分别表示沿扶手椅形、锯齿形和双轴方向的应变箭头表示导带最小值 (CBM)指向价带最大值 (VBM)的方向) (a) σ = 0 (图中a 表示ε-GeSe的导带最小值, b 表示与a 相同路径点的价带点, c 是ε-GeSe的价带最大值, d 是与c 的相同路径点的导带点); (b) σx = 10%; (c) σx = 20%; (d) σy = 10%; (e) σy = 20%; (f) σxy = 10%; (g) σxy = 20%

Fig. 5. Isosurfaces of partial charge densities of monolayer ε-GeSe ((a), (b), (c), (d) are corresponding points to a , b ,c andd in Fig. 4(a) , respectively).
单层ε-GeSe部分电荷密度的等值面 ((a), (b), (c), (d)分别对应于图4(a) 中a , b , c 和d 所标注的点)
|
Table 1. Relaxed structural parameters of five isomers of GeSe monolayer (a andb are the lattice constants, respectively.h is the buckling height of GeSe; E b is the bind energy per atom; E g is the fundamental band gap).
|
Table 2. Calculated results of vibration frequencies of five isomers of GeSe (E 0 represents zero energy, E f /i represents virtual frequency, E f /i /E 0 denotes virtual frequency occupies the proportion of zero energy).
|
Table 3. Summary of the optimized geometric structures and energy gaps for ε-GeSe under in-plane strains along the armchair (σx ), zigzag (σy ) and biaxial (σxy ) directions (Negative values of strain denote compress strains, while positive values denote tensile strains. d 1, d 2 and d 3 (as shown in Fig. 1(e) ) represent the distance between Ge and Se atoms, respectively. θ 1 represents the θ (Ge-Se-Ge) bond angle. θ 2 represents the θ (Se-Ge-Se) bond angle. E g(eV) is the band gap under the corresponding strain,(ind.)is the indirect band gap, (dir.) is the direct band gap)
Set citation alerts for the article
Please enter your email address