[2] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Prog Polym Sci, 2016, 59: 41-85.
[3] SHAHIL K M F, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Lett, 2012, 12(2): 861-867.
[4] ZHAO L, YAN L, WEI C, et al. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres[J]. J Phys Chem C, 2020, 124(23): 12723-12733.
[5] HONG J P, YOON S W, HWANG T, et al. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers[J]. Thermochim Acta, 2012, 537: 70-75.
[6] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Mater Today, 2014, 17(4): 163-174.
[7] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. J Eur Ceram Soc, 2014, 34(10): 2585-2589.
[8] FATTAHI M, VAFERI K, VAJDI M, et al. Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: a numerical study[J]. Ceram Int, 2020, 46(8): 11647-11657.
[9] INYUSHKIN A V, TALDENKOV A N, CHERNODUBOV D A, et al. On the thermal conductivity of single crystal AlN[J]. J Appl Phys, 2020, 127(20): 205109.
[11] VAED K, FLORKEY J, AKBAR S A, et al. An additive micromolding approach for the development of micromachined ceramic substrates for RF applications[J]. J Microelectromech S, 2004, 13(3): 514-525.
[12] GORBUNOVA M A, SHEIN I R, MAKURIN Y N, et al. Electronic and magnetic properties of beryllium oxide with 3d impurities from first-principles calculations[J]. Phys B-Condensed Matter, 2007, 400(1-2): 47-52.
[13] GASKINS J T, HOPKINS P E, MERRILL D R, et al. Investigation and review of the thermal, mechanical, electrical, optical, and structural properties of atomic layer deposited high-k dielectrics: beryllium oxide, aluminum oxide, hafnium oxide, and aluminum nitride[J]. ECS J Solid State Sc, 2017, 6(10): N189.
[14] JUNG W S, AHN S K. Synthesis of aluminium nitride by the reaction of aluminium sulfide with ammonia[J]. Mater Lett, 2000, 43: 53-56.
[15] LONG G, FOSTER L M. Aluminum nitride, a refractory for aluminum to 2000° C[J]. J Am Ceram Soc, 1959, 42(2): 53-59.
[16] MOLIAN R, SHROTRIYA P, MOLIAN P. Thermal stress fracture mode of CO2 laser cutting of aluminum nitride[J]. Int J Adv Manuf Tech, 2008, 39(7/8): 725-733.
[17] ZEMAN O E O, MOUDRAKOVSKI I L, HARTMANN C, et al. Local electronic structure in AlN studied by single-crystal 27Al and 14N NMR and DFT calculations[J]. Molecules, 2020, 25(3): 469.
[18] KIM K I, CHOI S C, KIM J H, et al. Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma[J]. Ceram int, 2014, 40(6): 8117-8123.
[19] KIM K I, CHOI S C, HAN K S, et al. Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma[J]. J Kor Cryst Growth C, 2014, 24(1): 1-7.
[20] OGNJANOVI? S M, WINTERER M. Optimizing particle characteristics of nanocrystalline aluminum nitride[J]. Powder Technol, 2018, 326: 488-497.
[21] ELAGIN A A, BEKETOV A R, BARANOV M V, et al. Aluminum nitride. preparation methods[J]. Refract Ind Ceram, 2013, 53(6): 395-403.
[22] FU L, QIAO L, ZHENG J W, et al. Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition[J]. J Eur Ceram Soc, 2018, 38(4): 1170-1178.
[23] A SHISHKIN R, A ELAGIN A, S MAYOROVA E, et al. The advanced aluminum nitride synthesis methods and its applications: patent review[J]. Recent Pat Nanotech, 2016, 10(2): 146-156.
[24] KAMESHIMA Y, IRIE M, YASUMORI A, et al. Low temperature synthesis of AlN by addition of various Li-salts[J]. J Eur Ceram Soc, 2004, 24(15-16): 3801-6.
[25] RADWAN M, BAHGAT M. A modified direct nitridation method for formation of nano-AlN whiskers[J]. J Mater Process Tech, 2007, 181(1-3): 99-105.
[26] ZAKORZHEVSKII V V, BOROVINSKAYA I P. Combustion synthesis of submicron AlN particles[J]. Inorg Mater, 2015, 51(6): 566-571.
[27] SHAHIEN M, YAMADA M, YASUI T, et al. Cubic aluminum nitride coating through atmospheric reactive plasma nitriding[J]. J Therm Spray Techn, 2010, 19(3): 635-641.
[28] LIU Z J, YANG D Z, WANG W C, et al. Effect of different precursors on synthesized AlN by plasma-assisted ball milling[J]. Mater Manuf Process, 2016, 31(12): 1583-1588.
[29] KIM K. Plasma synthesis and characterization of nanocrystalline aluminum nitride particles by aluminum plasma jet discharge[J]. J Cryst Growth, 2005, 283(3/4): 540-546.
[30] ERWIN S C, LYONS J L. Atomic layer epitaxy of aluminum nitride: Unraveling the connection between hydrogen plasma and carbon contamination[J]. ACS Appl Mater Interf, 2018, 10(23): 20142-20149.
[31] HE Q, QIN M, HUANG M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia[J]. Ceram Int, 2019, 45(12): 14568-14575.
[32] GHOSH CHAUDHURI M, BASU J, DAS G C, et al. A novel method of synthesis of nanostructured aluminum nitride through sol-gel route by in situ generation of nitrogen[J]. J Am Ceram Soc, 2013, 96(2): 385-390.
[33] SHANG Q, WANG Z, LI J, et al. Gel-tape-casting of aluminum nitride ceramics[J]. J Adv Ceram, 2017, 6(1): 67-72.
[34] CHIKAMI H, FUKUSHIMA J, HAYASHI Y, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature[J]. J Am Ceram Soc, 2018, 101(11): 4905-4910.
[35] LI C H, KAO L H, CHEN M J, et al. Rapid preparation of aluminum nitride powders by using microwave plasma[J]. J Alloy Compd, 2012, 542: 78-84.
[36] ZENG X, QIAN D, LI W, et al. Effects of additive on the microwave synthesis of AlN powder[J]. J Am Ceram Soc, 2007, 90(10): 3289-3292.
[37] XU G. Unique high temperature microwave sintering of aluminum nitride based ceramics with high thermal conductivity[M]. University of Maryland, College Park, 2002.
[38] CHOI H S, IM H N, KIM Y M, et al. Structural, thermal and mechanical properties of aluminum nitride ceramics with CeO2 as a sintering aid[J]. Ceram Int, 2016, 42(10): 11519-11524.
[39] XIONG Y, WANG H, FU Z. Transient liquid-phase sintering of AlN ceramics with CaF2 additive[J]. J Eur Ceram Soc, 2013, 33(11): 2199-2205.
[40] FU C L, WU S H, CHENG Y L, et al. Effect of silicon compounds on the properties of pressureless sintered aluminum nitride[J]. Key Eng Mater, 2014, 602-603: 565-569.
[41] LI Q, WANG Z, WU C, et al. Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering[J]. J Alloy Compd, 2015, 640: 275-279.
[42] LIANG A, LIU C, BRANICIO P S. Hot-press sintering of aluminum nitride nanoceramics[J]. Phys Rev Mater, 2021, 5(9): 096001.
[43] MOLISANI A L, GOLDENSTEIN H, YOSHIMURA H N. The role of CaO additive on sintering of aluminum nitride ceramics[J]. Ceram Int, 2017, 43(18): 16972-16979.
[44] CHENG J, AGRAWAL D, ZHANG Y, et al. Development of translucent aluminum nitride (AlN) using microwave sintering process[J]. J electroceram, 2002, 9(1): 67-71.
[45] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. J Alloy Compd, 2010, 494(1-2): 175-189.
[46] CHIKAMI H, FUKUSHIMA J, HAYASHI Y, et al. Low-temperature synthesis of aluminum nitride from transition alumina by microwave processing[J]. J Am Ceram Soc, 2016, 99(11): 3540-3545.
[47] KOBAYASHI R, OH-ISHI K, TU R, et al. Sintering behavior, microstructure, and thermal conductivity of dense AlN ceramics processed by spark plasma sintering with Y2O3-CaO-B additives[J]. Ceram Int, 2015, 41(1): 1897-1901.
[48] BASKUT S, CINAR A, TURAN S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets[J]. J Eur Ceram Soc, 2017, 37(12): 3759-3772.
[49] HAUSSONNE F J M. Review of the Synthesis Methods for AlN[J]. Mater Manuf Process, 1995, 10(4): 717-755.
[50] JARRIGE J, LECOMPTE J P, MULLOT J, et al. Effect of oxygen on the thermal conductivity of aluminum nitride ceramics[J]. J Eur Ceram Soc, 1997, 17: 1891-1895.
[51] HOQUE M S B, KOH Y R, BRAUN J L, et al. High in-plane thermal conductivity of aluminum nitride thin films[J]. ACS Nano, 2021. DOI: 10.1021/acsnano.0c09915
[52] HSIEH C Y, LIN C N, CHUNG S L, et al. Microwave sintering of AlN powder synthesized by a SHS method[J]. J Eur Ceram Soc, 2007, 27(1): 343-350.
[53] KUME S, YASUOKA M, LEE S K, et al. Dielectric and thermal properties of AlN ceramics[J]. J Eur Ceram Soc, 2007, 27(8/9): 2967-2971.
[54] GONZALEZ M, IBARRA A. The dielectric behaviour of commercial polycrystalline aluminium nitride[J]. Diam Relat Mater, 2000, 9: 467-471.
[55] HE X, SHI L, GUO Y, et al. Study on microstructure and dielectric properties of aluminum nitride ceramics[J]. Mater Charact, 2015, 106: 404-410.
[56] NIE G, SHENG P, LI Y, et al. Enhanced mechanical and thermal properties of AlN ceramics via a chemical precipitation process[J]. Int J Appl Ceram Tec, 2021, 18(4): 1255-1268.
[57] CHEN F, JIA M, SHE Y, et al. Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures[J]. J Alloy Compd, 2020, 816: 152512.
[58] XU F M, ZHANG Z J, SHI X L, et al. Effects of adding yttrium nitrate on the mechanical properties of hot-pressed AlN ceramics[J]. J Alloy Compd, 2011, 509(35): 8688-8691.
[59] SHARAR D J, JANKOWSKI N R, MORGAN B. Thermal performance of a Direct-Bond-Copper Aluminum Nitride manifold- microchannel cooler[C]//26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). Santa Clara, CA USA, 2010: 68-73.
[62] WANG Q, GAO W, XIE Z. Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease[J]. J Appl Polym Sci, 2003, 89(9): 2397-2399.
[63] SHI Z, RADWAN M, KIRIHARA S, et al. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers[J]. Appl Phys Lett, 2009, 95(22): 224104.
[64] BAE J W, KIM W, CHO S H. The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution[J]. J Mater Sci, 2000, 35: 5907-5913.
[65] OHASHI M, KAWAKAMI S, YOKOGAWA Y, et al. Spherical aluminum nitride fillers for heat-conducting plastic packages[J]. J Am Ceram Soc, 2005, 88(9): 2615-2618.
[66] LIN Z, YOON R J. An AlN-based high temperature package for SiC devices: Materials and processing[C]//Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. Irvine, CA, USA, 2005: 156-159.
[67] CHEN L Y, HUNTER G W, NEUDECK P G, et al. Packaging technologies for high temperature electronics and sensors[C]//Joint Conference on 67th Machinery Failure Prevention Technology, MFPT 2013 and 59th International Society of Automation. Cleveland, Ohio, USA, 2013:3.
[69] SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Rev Mod Phys, 1989, 61(3): 605.
[70] YAN-LING Y, IN-PING L. Research on high thermal conductivity and low loss tangent aluminum nitride ceramics[C]//2019 International Vacuum Electronics Conference (IVEC). Busan, Korea (South), 2019: 1-2.
[71] TAZZOLI A, RINALDI M, PIAZZA G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators[C]//2011 International Electron Devices Meeting. Washington, DC, USA, 2011: 20.2. 1-20.2. 4.
[72] CASSELLA C, OLIVA N, SOON J, et al. Super High frequency aluminum nitride two-dimensional-mode resonators with kt2 exceeding 4.9%[J]. IEEE Microw Wirel Co, 2017, 27(2): 105-107.
[73] XIONG C, SUN X, FONG K Y, et al. Integrated high frequency aluminum nitride optomechanical resonators[J]. Appl Phys Lett, 2012, 100(17): 171111.
[74] LIU Y, CAI Y, ZHANG Y, et al. Materials, design, and characteristics of bulk acoustic wave resonator: a review[J]. Micromachines, 2020, 11(7): 630.
[75] JONES A C, RUSHWORTH S A, HOULTON D J, et al. Deposition of aluminum nitride thin films by MOCVD from the trimethylaluminum- ammonia adduct[J]. Chem Vapor Depos, 1996, 2(1): 5-8.
[76] OHTA J, FUJIOKA H, SUMIYA M, et al. Epitaxial growth of AlN on (La, Sr) (Al, Ta) O3 substrate by laser MBE[J]. J Cryst Growth, 2001, 225(1): 73-78.
[77] VISPUTE R D, WU H, NARAYAN J. High quality epitaxial aluminum nitride layers on sapphire by pulsed laser depo-sition[J]. Appl Phys Lett, 1995, 67(11): 1549-1551.
[78] BARSHILIA H C, DEEPTHI B, RAJAM K S. Growth and characterization of aluminum nitride coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering[J]. Thin Solid Films, 2008, 516(12): 4168-4174.
[79] LA SPINA L, IBORRA E, SCHELLEVIS H, et al. Aluminum nitride for heatspreading in RF IC’s[J]. Solid-State Electron, 2008, 52(9): 1359-1363.
[80] KITTEL C, Introduction to Solid State Physics, 8th ed[M]. New York, John Wiley & Sons, 2004.
[81] PERNICE W H P, XIONG C, SCHUCK C, et al. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators[J]. Appl Phys Lett, 2012, 100(22): 223501.
[82] SUN C, SOON B W, ZHU Y, et al. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators[J]. Appl Phys Lett, 2015, 106(25): 253502.
[83] SOHN D B, KIM S, BAHL G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91-97.
[84] NG D K T, ZHANG T, SIOW L Y, et al. A functional CMOS compatible MEMS pyroelectric detector using 12%-doped scandium aluminum nitride[J]. Appl Phys Lett, 2020, 117(18): 183506.
[85] LI N, HO C P, ZHU S, et al. Aluminum nitride integrated photonics: a review[J]. Nanophotonics, 2021. 10(9): 2347-2387.
[86] HUANG M R S, ERNI R, LIU C P. Influence of surface oxidation on the valence electron energy-loss spectrum of wurtzite aluminum nitride[J]. Appl Phys Lett, 2013, 102(6): 061902.
[87] WANG Q, OLHERO S M, FERREIRA J M F, et al. Hydrolysis control of AlN powders for the aqueous processing of spherical AlN granules[J]. J Am Ceram Soc, 2013, 96(5): 1383-1389.
[88] ULLAH A, USMAN M, QINGYU W, et al. Structural, electrical and optical characterizations of yttrium doped aluminum nitride thin films before and after ions irradiation[J]. Opt Mater, 2021, 116: 111097.
[89] NOVIKOV L S, MILEEV V N, VORONINA E N, et al. Radiation effects on spacecraft materials[J]. J Surf Invest-X-Ray, 2009, 3(2): 199-214.
[90] SAMWEL S W. Low earth orbital atomic oxygen erosion effect on spacecraft materials[J]. Space Res J, 2014, 7(1): 1-13.
[91] FAYAZBAKHSH K, ABEDIAN A. Materials selection for applications in space environment considering outgassing phenomenon[J]. Adv Space Res, 2010, 45(6): 741-749.
[92] GROSSMAN E, GOUZMAN I, VERKER R. Debris/micrometeoroid impacts and synergistic effects on spacecraft materials[J]. MRS Bull, 2010: 3541-3547.