• Journal of the Chinese Ceramic Society
  • Vol. 50, Issue 6, 1701 (2022)
HE Duanpeng1,*, HUANG Xueyin2, REN Gang3, WANG Yang1..., YU Xiangtian1, LI Yan1, XING Yan1 and GAO Hong1|Show fewer author(s)
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    HE Duanpeng, HUANG Xueyin, REN Gang, WANG Yang, YU Xiangtian, LI Yan, XING Yan, GAO Hong. Development on High Thermal Conductive and Electric Insulative AlN Ceramics in Aerospace Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1701 Copy Citation Text show less
    References

    [2] CHEN H, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Prog Polym Sci, 2016, 59: 41-85.

    [3] SHAHIL K M F, BALANDIN A A. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials[J]. Nano Lett, 2012, 12(2): 861-867.

    [4] ZHAO L, YAN L, WEI C, et al. Synergistic enhanced thermal conductivity of epoxy composites with boron nitride nanosheets and microspheres[J]. J Phys Chem C, 2020, 124(23): 12723-12733.

    [5] HONG J P, YOON S W, HWANG T, et al. High thermal conductivity epoxy composites with bimodal distribution of aluminum nitride and boron nitride fillers[J]. Thermochim Acta, 2012, 537: 70-75.

    [6] MOORE A L, SHI L. Emerging challenges and materials for thermal management of electronics[J]. Mater Today, 2014, 17(4): 163-174.

    [7] ZHU X W, SAKKA Y, ZHOU Y, et al. A strategy for fabricating textured silicon nitride with enhanced thermal conductivity[J]. J Eur Ceram Soc, 2014, 34(10): 2585-2589.

    [8] FATTAHI M, VAFERI K, VAJDI M, et al. Aluminum nitride as an alternative ceramic for fabrication of microchannel heat exchangers: a numerical study[J]. Ceram Int, 2020, 46(8): 11647-11657.

    [9] INYUSHKIN A V, TALDENKOV A N, CHERNODUBOV D A, et al. On the thermal conductivity of single crystal AlN[J]. J Appl Phys, 2020, 127(20): 205109.

    [11] VAED K, FLORKEY J, AKBAR S A, et al. An additive micromolding approach for the development of micromachined ceramic substrates for RF applications[J]. J Microelectromech S, 2004, 13(3): 514-525.

    [12] GORBUNOVA M A, SHEIN I R, MAKURIN Y N, et al. Electronic and magnetic properties of beryllium oxide with 3d impurities from first-principles calculations[J]. Phys B-Condensed Matter, 2007, 400(1-2): 47-52.

    [13] GASKINS J T, HOPKINS P E, MERRILL D R, et al. Investigation and review of the thermal, mechanical, electrical, optical, and structural properties of atomic layer deposited high-k dielectrics: beryllium oxide, aluminum oxide, hafnium oxide, and aluminum nitride[J]. ECS J Solid State Sc, 2017, 6(10): N189.

    [14] JUNG W S, AHN S K. Synthesis of aluminium nitride by the reaction of aluminium sulfide with ammonia[J]. Mater Lett, 2000, 43: 53-56.

    [15] LONG G, FOSTER L M. Aluminum nitride, a refractory for aluminum to 2000° C[J]. J Am Ceram Soc, 1959, 42(2): 53-59.

    [16] MOLIAN R, SHROTRIYA P, MOLIAN P. Thermal stress fracture mode of CO2 laser cutting of aluminum nitride[J]. Int J Adv Manuf Tech, 2008, 39(7/8): 725-733.

    [17] ZEMAN O E O, MOUDRAKOVSKI I L, HARTMANN C, et al. Local electronic structure in AlN studied by single-crystal 27Al and 14N NMR and DFT calculations[J]. Molecules, 2020, 25(3): 469.

    [18] KIM K I, CHOI S C, KIM J H, et al. Synthesis and characterization of high-purity aluminum nitride nanopowder by RF induction thermal plasma[J]. Ceram int, 2014, 40(6): 8117-8123.

    [19] KIM K I, CHOI S C, HAN K S, et al. Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma[J]. J Kor Cryst Growth C, 2014, 24(1): 1-7.

    [20] OGNJANOVI? S M, WINTERER M. Optimizing particle characteristics of nanocrystalline aluminum nitride[J]. Powder Technol, 2018, 326: 488-497.

    [21] ELAGIN A A, BEKETOV A R, BARANOV M V, et al. Aluminum nitride. preparation methods[J]. Refract Ind Ceram, 2013, 53(6): 395-403.

    [22] FU L, QIAO L, ZHENG J W, et al. Phase, microstructure and sintering of aluminum nitride powder by the carbothermal reduction-nitridation process with Y2O3 addition[J]. J Eur Ceram Soc, 2018, 38(4): 1170-1178.

    [23] A SHISHKIN R, A ELAGIN A, S MAYOROVA E, et al. The advanced aluminum nitride synthesis methods and its applications: patent review[J]. Recent Pat Nanotech, 2016, 10(2): 146-156.

    [24] KAMESHIMA Y, IRIE M, YASUMORI A, et al. Low temperature synthesis of AlN by addition of various Li-salts[J]. J Eur Ceram Soc, 2004, 24(15-16): 3801-6.

    [25] RADWAN M, BAHGAT M. A modified direct nitridation method for formation of nano-AlN whiskers[J]. J Mater Process Tech, 2007, 181(1-3): 99-105.

    [26] ZAKORZHEVSKII V V, BOROVINSKAYA I P. Combustion synthesis of submicron AlN particles[J]. Inorg Mater, 2015, 51(6): 566-571.

    [27] SHAHIEN M, YAMADA M, YASUI T, et al. Cubic aluminum nitride coating through atmospheric reactive plasma nitriding[J]. J Therm Spray Techn, 2010, 19(3): 635-641.

    [28] LIU Z J, YANG D Z, WANG W C, et al. Effect of different precursors on synthesized AlN by plasma-assisted ball milling[J]. Mater Manuf Process, 2016, 31(12): 1583-1588.

    [29] KIM K. Plasma synthesis and characterization of nanocrystalline aluminum nitride particles by aluminum plasma jet discharge[J]. J Cryst Growth, 2005, 283(3/4): 540-546.

    [30] ERWIN S C, LYONS J L. Atomic layer epitaxy of aluminum nitride: Unraveling the connection between hydrogen plasma and carbon contamination[J]. ACS Appl Mater Interf, 2018, 10(23): 20142-20149.

    [31] HE Q, QIN M, HUANG M, et al. Synthesis of highly sinterable AlN nanopowders through sol-gel route by reduction-nitridation in ammonia[J]. Ceram Int, 2019, 45(12): 14568-14575.

    [32] GHOSH CHAUDHURI M, BASU J, DAS G C, et al. A novel method of synthesis of nanostructured aluminum nitride through sol-gel route by in situ generation of nitrogen[J]. J Am Ceram Soc, 2013, 96(2): 385-390.

    [33] SHANG Q, WANG Z, LI J, et al. Gel-tape-casting of aluminum nitride ceramics[J]. J Adv Ceram, 2017, 6(1): 67-72.

    [34] CHIKAMI H, FUKUSHIMA J, HAYASHI Y, et al. Kinetics of microwave synthesis of AlN by carbothermal-reduction-nitridation at low temperature[J]. J Am Ceram Soc, 2018, 101(11): 4905-4910.

    [35] LI C H, KAO L H, CHEN M J, et al. Rapid preparation of aluminum nitride powders by using microwave plasma[J]. J Alloy Compd, 2012, 542: 78-84.

    [36] ZENG X, QIAN D, LI W, et al. Effects of additive on the microwave synthesis of AlN powder[J]. J Am Ceram Soc, 2007, 90(10): 3289-3292.

    [37] XU G. Unique high temperature microwave sintering of aluminum nitride based ceramics with high thermal conductivity[M]. University of Maryland, College Park, 2002.

    [38] CHOI H S, IM H N, KIM Y M, et al. Structural, thermal and mechanical properties of aluminum nitride ceramics with CeO2 as a sintering aid[J]. Ceram Int, 2016, 42(10): 11519-11524.

    [39] XIONG Y, WANG H, FU Z. Transient liquid-phase sintering of AlN ceramics with CaF2 additive[J]. J Eur Ceram Soc, 2013, 33(11): 2199-2205.

    [40] FU C L, WU S H, CHENG Y L, et al. Effect of silicon compounds on the properties of pressureless sintered aluminum nitride[J]. Key Eng Mater, 2014, 602-603: 565-569.

    [41] LI Q, WANG Z, WU C, et al. Microstructure and mechanical properties of aluminum nitride co-doped with cerium oxide via hot-pressing sintering[J]. J Alloy Compd, 2015, 640: 275-279.

    [42] LIANG A, LIU C, BRANICIO P S. Hot-press sintering of aluminum nitride nanoceramics[J]. Phys Rev Mater, 2021, 5(9): 096001.

    [43] MOLISANI A L, GOLDENSTEIN H, YOSHIMURA H N. The role of CaO additive on sintering of aluminum nitride ceramics[J]. Ceram Int, 2017, 43(18): 16972-16979.

    [44] CHENG J, AGRAWAL D, ZHANG Y, et al. Development of translucent aluminum nitride (AlN) using microwave sintering process[J]. J electroceram, 2002, 9(1): 67-71.

    [45] OGHBAEI M, MIRZAEE O. Microwave versus conventional sintering: A review of fundamentals, advantages and applications[J]. J Alloy Compd, 2010, 494(1-2): 175-189.

    [46] CHIKAMI H, FUKUSHIMA J, HAYASHI Y, et al. Low-temperature synthesis of aluminum nitride from transition alumina by microwave processing[J]. J Am Ceram Soc, 2016, 99(11): 3540-3545.

    [47] KOBAYASHI R, OH-ISHI K, TU R, et al. Sintering behavior, microstructure, and thermal conductivity of dense AlN ceramics processed by spark plasma sintering with Y2O3-CaO-B additives[J]. Ceram Int, 2015, 41(1): 1897-1901.

    [48] BASKUT S, CINAR A, TURAN S. Directional properties and microstructures of spark plasma sintered aluminum nitride containing graphene platelets[J]. J Eur Ceram Soc, 2017, 37(12): 3759-3772.

    [49] HAUSSONNE F J M. Review of the Synthesis Methods for AlN[J]. Mater Manuf Process, 1995, 10(4): 717-755.

    [50] JARRIGE J, LECOMPTE J P, MULLOT J, et al. Effect of oxygen on the thermal conductivity of aluminum nitride ceramics[J]. J Eur Ceram Soc, 1997, 17: 1891-1895.

    [51] HOQUE M S B, KOH Y R, BRAUN J L, et al. High in-plane thermal conductivity of aluminum nitride thin films[J]. ACS Nano, 2021. DOI: 10.1021/acsnano.0c09915

    [52] HSIEH C Y, LIN C N, CHUNG S L, et al. Microwave sintering of AlN powder synthesized by a SHS method[J]. J Eur Ceram Soc, 2007, 27(1): 343-350.

    [53] KUME S, YASUOKA M, LEE S K, et al. Dielectric and thermal properties of AlN ceramics[J]. J Eur Ceram Soc, 2007, 27(8/9): 2967-2971.

    [54] GONZALEZ M, IBARRA A. The dielectric behaviour of commercial polycrystalline aluminium nitride[J]. Diam Relat Mater, 2000, 9: 467-471.

    [55] HE X, SHI L, GUO Y, et al. Study on microstructure and dielectric properties of aluminum nitride ceramics[J]. Mater Charact, 2015, 106: 404-410.

    [56] NIE G, SHENG P, LI Y, et al. Enhanced mechanical and thermal properties of AlN ceramics via a chemical precipitation process[J]. Int J Appl Ceram Tec, 2021, 18(4): 1255-1268.

    [57] CHEN F, JIA M, SHE Y, et al. Mechanical behavior of AlN/Mo functionally graded materials with various compositional structures[J]. J Alloy Compd, 2020, 816: 152512.

    [58] XU F M, ZHANG Z J, SHI X L, et al. Effects of adding yttrium nitrate on the mechanical properties of hot-pressed AlN ceramics[J]. J Alloy Compd, 2011, 509(35): 8688-8691.

    [59] SHARAR D J, JANKOWSKI N R, MORGAN B. Thermal performance of a Direct-Bond-Copper Aluminum Nitride manifold- microchannel cooler[C]//26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM). Santa Clara, CA USA, 2010: 68-73.

    [62] WANG Q, GAO W, XIE Z. Highly thermally conductive room-temperature-vulcanized silicone rubber and silicone grease[J]. J Appl Polym Sci, 2003, 89(9): 2397-2399.

    [63] SHI Z, RADWAN M, KIRIHARA S, et al. Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers[J]. Appl Phys Lett, 2009, 95(22): 224104.

    [64] BAE J W, KIM W, CHO S H. The properties of AlN-filled epoxy molding compounds by the effects of filler size distribution[J]. J Mater Sci, 2000, 35: 5907-5913.

    [65] OHASHI M, KAWAKAMI S, YOKOGAWA Y, et al. Spherical aluminum nitride fillers for heat-conducting plastic packages[J]. J Am Ceram Soc, 2005, 88(9): 2615-2618.

    [66] LIN Z, YOON R J. An AlN-based high temperature package for SiC devices: Materials and processing[C]//Proceedings. International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. Irvine, CA, USA, 2005: 156-159.

    [67] CHEN L Y, HUNTER G W, NEUDECK P G, et al. Packaging technologies for high temperature electronics and sensors[C]//Joint Conference on 67th Machinery Failure Prevention Technology, MFPT 2013 and 59th International Society of Automation. Cleveland, Ohio, USA, 2013:3.

    [69] SWARTZ E T, POHL R O. Thermal boundary resistance[J]. Rev Mod Phys, 1989, 61(3): 605.

    [70] YAN-LING Y, IN-PING L. Research on high thermal conductivity and low loss tangent aluminum nitride ceramics[C]//2019 International Vacuum Electronics Conference (IVEC). Busan, Korea (South), 2019: 1-2.

    [71] TAZZOLI A, RINALDI M, PIAZZA G. Ovenized high frequency oscillators based on aluminum nitride contour-mode MEMS resonators[C]//2011 International Electron Devices Meeting. Washington, DC, USA, 2011: 20.2. 1-20.2. 4.

    [72] CASSELLA C, OLIVA N, SOON J, et al. Super High frequency aluminum nitride two-dimensional-mode resonators with kt2 exceeding 4.9%[J]. IEEE Microw Wirel Co, 2017, 27(2): 105-107.

    [73] XIONG C, SUN X, FONG K Y, et al. Integrated high frequency aluminum nitride optomechanical resonators[J]. Appl Phys Lett, 2012, 100(17): 171111.

    [74] LIU Y, CAI Y, ZHANG Y, et al. Materials, design, and characteristics of bulk acoustic wave resonator: a review[J]. Micromachines, 2020, 11(7): 630.

    [75] JONES A C, RUSHWORTH S A, HOULTON D J, et al. Deposition of aluminum nitride thin films by MOCVD from the trimethylaluminum- ammonia adduct[J]. Chem Vapor Depos, 1996, 2(1): 5-8.

    [76] OHTA J, FUJIOKA H, SUMIYA M, et al. Epitaxial growth of AlN on (La, Sr) (Al, Ta) O3 substrate by laser MBE[J]. J Cryst Growth, 2001, 225(1): 73-78.

    [77] VISPUTE R D, WU H, NARAYAN J. High quality epitaxial aluminum nitride layers on sapphire by pulsed laser depo-sition[J]. Appl Phys Lett, 1995, 67(11): 1549-1551.

    [78] BARSHILIA H C, DEEPTHI B, RAJAM K S. Growth and characterization of aluminum nitride coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering[J]. Thin Solid Films, 2008, 516(12): 4168-4174.

    [79] LA SPINA L, IBORRA E, SCHELLEVIS H, et al. Aluminum nitride for heatspreading in RF IC’s[J]. Solid-State Electron, 2008, 52(9): 1359-1363.

    [80] KITTEL C, Introduction to Solid State Physics, 8th ed[M]. New York, John Wiley & Sons, 2004.

    [81] PERNICE W H P, XIONG C, SCHUCK C, et al. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators[J]. Appl Phys Lett, 2012, 100(22): 223501.

    [82] SUN C, SOON B W, ZHU Y, et al. Methods for improving electromechanical coupling coefficient in two dimensional electric field excited AlN Lamb wave resonators[J]. Appl Phys Lett, 2015, 106(25): 253502.

    [83] SOHN D B, KIM S, BAHL G. Time-reversal symmetry breaking with acoustic pumping of nanophotonic circuits[J]. Nat Photonics, 2018, 12(2): 91-97.

    [84] NG D K T, ZHANG T, SIOW L Y, et al. A functional CMOS compatible MEMS pyroelectric detector using 12%-doped scandium aluminum nitride[J]. Appl Phys Lett, 2020, 117(18): 183506.

    [85] LI N, HO C P, ZHU S, et al. Aluminum nitride integrated photonics: a review[J]. Nanophotonics, 2021. 10(9): 2347-2387.

    [86] HUANG M R S, ERNI R, LIU C P. Influence of surface oxidation on the valence electron energy-loss spectrum of wurtzite aluminum nitride[J]. Appl Phys Lett, 2013, 102(6): 061902.

    [87] WANG Q, OLHERO S M, FERREIRA J M F, et al. Hydrolysis control of AlN powders for the aqueous processing of spherical AlN granules[J]. J Am Ceram Soc, 2013, 96(5): 1383-1389.

    [88] ULLAH A, USMAN M, QINGYU W, et al. Structural, electrical and optical characterizations of yttrium doped aluminum nitride thin films before and after ions irradiation[J]. Opt Mater, 2021, 116: 111097.

    [89] NOVIKOV L S, MILEEV V N, VORONINA E N, et al. Radiation effects on spacecraft materials[J]. J Surf Invest-X-Ray, 2009, 3(2): 199-214.

    [90] SAMWEL S W. Low earth orbital atomic oxygen erosion effect on spacecraft materials[J]. Space Res J, 2014, 7(1): 1-13.

    [91] FAYAZBAKHSH K, ABEDIAN A. Materials selection for applications in space environment considering outgassing phenomenon[J]. Adv Space Res, 2010, 45(6): 741-749.

    [92] GROSSMAN E, GOUZMAN I, VERKER R. Debris/micrometeoroid impacts and synergistic effects on spacecraft materials[J]. MRS Bull, 2010: 3541-3547.

    HE Duanpeng, HUANG Xueyin, REN Gang, WANG Yang, YU Xiangtian, LI Yan, XING Yan, GAO Hong. Development on High Thermal Conductive and Electric Insulative AlN Ceramics in Aerospace Devices[J]. Journal of the Chinese Ceramic Society, 2022, 50(6): 1701
    Download Citation