• Optoelectronics Letters
  • Vol. 18, Issue 3, 166 (2022)
Dan LIANG, Rui ZHAO*, Zhongcheng LIANG, Meimei KONG, and Tao CHEN
Author Affiliations
  • Center of Optofluidic Technology, College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunication, Nanjing 210023, China
  • show less
    DOI: 10.1007/s11801-022-1113-y Cite this Article
    LIANG Dan, ZHAO Rui, LIANG Zhongcheng, KONG Meimei, CHEN Tao. Electrowetting-driven droplet shrinkage with tunable focus property[J]. Optoelectronics Letters, 2022, 18(3): 166 Copy Citation Text show less
    References

    [1] ZHONG Q F, DING H B, GAO B B, et al. Advances of microfluidics in biomedical engineering[J]. Advanced materials technologies, 2019, 4(6):1800663.

    [2] WEISGRAB G, OVSIANIKOV A, COSTA P F. Functional 3D printing for microfluidic chips[J]. Advanced material technologies, 2019, 4(10):1900275.

    [3] CHOU W L, PEE Y L, YANG C L, et al. Recent advances in applications of droplet microfluidics[J]. Micromachines, 2015, 6(9):1249-1271.

    [4] CONNER C, VISSER T, LOESSBERG J, et al. Energy harvesting with a liquid-metal microfluidic influence machine[J]. Physical review applied, 2018, 9(4): 044008.

    [5] DARHUBER A, VALENTINO J, TROIAN S. Planar digital nanoliter dispensing system based on thermocapillary actuation[J]. Lab on a chip, 2010, 10(8): 1061-1071.

    [6] HERON S, WILSON R, SHAFFER S, et al. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry[J]. Analytical chemistry, 2010, 82(10):3985-3989.

    [7] CHEN R, JIAO L, ZHU X, et al. Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation[J]. Applied thermal engineering, 2018, 144:945-959.

    [8] HU H, HUANG S, CHEN L. Displacement of liquid droplets on micro-grooved surfaces with air flow[J]. Experimental thermal & fluid science, 2013, 49:86-93.

    [9] WASHIZU M. Electrostatic actuation of liquid droplets for micro-reactor applications[J]. IEEE transactions on industry applications, 1998, 34(4):732-737.

    [10] TIMONEN J, LATIKKA M, LEIBLER L, et al. Switchable static and dynamic self-assembly of magnetic droplets on superhydrophobic surfaces[J]. Science, 2013, 341(6143):253-257.

    [11] ZHAO R, LIANG Z C. Mechanism of contact angle saturation and an energy-based model for electrowetting[J]. Chinese physics B, 2016, 25(6):364-369.

    [12] MUGELE F, BARET J C. Topical review: electrowetting:from basics to applications[J]. Journal of physics condensed matter, 2005, 17(28):705-774.

    [13] VANCAUWENBERGHE V, MARCO P D, BRUTIN D. Wetting and evaporation of a sessile drop under an external electrical field:a review[J]. Colloids & surfaces a physicochemical & engineering aspects, 2013, 432(17):50-56.

    [14] GRINSVEN K V, ASHTIANI A O, JIANG H. Fabrication and actuation of an electrowetting droplet array on a flexible substrate[J]. Micromachines, 2017, 8(11): 334.

    [15] NELSON W C, KIM C J C, CHANG J. Droplet actuation by electrowetting-on-dielectric (EWOD):a review[J]. Journal adhesion science & technology, 2012, 26(12-17):1747-1771.

    [16] LIPPMANN G. Relations entre les phenomenes electriques et capillaires[J]. Annales chimie physique, 1875, 5(11):494.

    [17] KUIPER S. Variable-focus liquid lens for miniature cameras[J]. Applied physics letters, 2004, 85(7): 1128-1130.

    [18] LIU C X, PARK J, CHOI J W. A planar lens based on the electrowetting of two immiscible liquids[J]. Journal of micromechanics & microengineering, 2008, 18(3): 035023.

    [19] MALK R, FOUILLET Y, DAVOUST L. Rotating flow within a droplet actuated with AC EWOD[J]. Sensors & actuators B chemical, 2011, 154(2):191-198.

    [20] LEI L, CHAO L, REN H, et al. Annular folded electrowetting liquid lens[J]. Optics letters, 2015, 40(9): 1968-1971.

    [21] LEE J, PARK Y, CHUNG S K. Multifunctional liquid lens for variable focus and aperture[J]. Sensors & actuators A physical, 2019, 287:77-184.

    [22] WENG N, WANG Q, GU J, et al. The dynamics of droplet detachment in reversed electrowetting (REW)[J]. Colloids and surfaces a physicochemical and engineering aspects, 2021, 616(4):126303.

    [23] ZHANG W J, ZHAO R, HE Y J, et al. Electrowetting-actuated optofluidic phase modulator[J]. Optics express, 2021, 29(2):797-804.

    [24] LIN Y Y, EVANS R D, WELCH E, et al. Low voltage electrowetting-on-dielectric platform using multilayer insulators[J]. Sensors & actuators B chemical, 2010, 150(1):465-470.

    [25] CHEN T. Research on microfluidic optical information device and its application[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2015:54-56. (in Chinese)

    LIANG Dan, ZHAO Rui, LIANG Zhongcheng, KONG Meimei, CHEN Tao. Electrowetting-driven droplet shrinkage with tunable focus property[J]. Optoelectronics Letters, 2022, 18(3): 166
    Download Citation