• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 1, 141 (2022)
LI Ruihong1、*, LI Xiaoyu1, LI Haoran1, ZHAO Keping1, and PENG Kang2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: Cite this Article
    LI Ruihong, LI Xiaoyu, LI Haoran, ZHAO Keping, PENG Kang. Structural Characteristics of Clay Minerals and Their Progress in CO2 Adsorption[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 141 Copy Citation Text show less
    References

    [1] HEPBURN C, ADLEN E, BEDDINGTON J, et al. The technological and economic prospects for CO2 utilization and removal[J]. Nature, 2019, 575(7781): 87-97.

    [2] SIEGELMAN R L, MILNER P J, KIM E J, et al. Challenges and opportunities for adsorption-based CO2 capture from natural gas combined cycle emissions[J]. Energy & Environmental Science, 2019, 12(7): 2161-2173.

    [4] CHEN Y H, LU D L. CO2 capture by kaolinite and its adsorption mechanism[J]. Applied Clay Science, 2015, 104: 221-228.

    [5] WANG W L, XIAO J, WEI X L, et al. Development of a new clay supported polyethylenimine composite for CO2 capture[J]. Applied Energy, 2014, 113: 334-341.

    [6] NIU M Y, YANG H M, ZHANG X C, et al. Amine-impregnated mesoporous silica nanotube as an emerging nanocomposite for CO2 capture[J]. ACS Applied Materials & Interfaces, 2016, 8(27): 17312-17320.

    [8] OUYANG J, GU W, ZHENG C H, et al. Polyethyleneimine (PEI) loaded MgO-SiO2 nanofibers from sepiolite minerals for reusable CO2 capture/release applications[J]. Applied Clay Science, 2018, 152: 267-275.

    [9] ZHANG Y, CHEN M K, LI G C, et al. Exfoliated vermiculite nanosheets supporting tetraethylenepentamine for CO2 capture[J]. Results in Materials, 2020, 7: 100102.

    [10] CHEN Y H, LU D L. Amine modification on kaolinites to enhance CO2 adsorption[J]. Journal of Colloid and Interface Science, 2014, 436: 47-51.

    [11] DENG L L, YUAN P, LIU D, et al. Effects of calcination and acid treatment on improving benzene adsorption performance of halloysite[J]. Applied Clay Science, 2019, 181: 105240.

    [12] CAI H H, BAO F, GAO J, et al. Preparation and characterization of novel carbon dioxide adsorbents based on polyethylenimine-modified Halloysite nanotubes[J]. Environmental Technology, 2015, 36(10): 1273-1280.

    [13] TAHERI F, GHAEMI A, MALEKI A, et al. High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite[J]. Energy & Fuels, 2019, 33(6): 5384-5397.

    [14] JANA S, DAS S, GHOSH C, et al. Halloysite nanotubes capturing isotope selective atmospheric CO2[J]. Scientific Reports, 2015, 5: 8711.

    [15] GE L, LIN R J, WANG L, et al. Surface-etched halloysite nanotubes in mixed matrix membranes for efficient gas separation[J]. Separation and Purification Technology, 2017, 173: 63-71.

    [16] STEVENS L, WILLIAMS K, HAN W Y, et al. Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route[J]. Chemical Engineering Journal, 2013, 215/216: 699-708.

    [17] HELLER R, ZOBACK M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 14-24.

    [18] WU K, YE Q, WU R P, et al. Alkali metal-promoted aluminum-pillared montmorillonites: high-performance CO2 adsorbents[J]. Journal of Solid State Chemistry, 2020, 291: 121585.

    [21] GMEZ-POZUELO G, SANZ-PREZ E S, ARENCIBIA A, et al. CO2 adsorption on amine-functionalized clays[J]. Microporous and Mesoporous Materials, 2019, 282: 38-47.

    [22] XIANG L, PAN Y C, ZENG G F, et al. Preparation of poly(ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2016, 500: 66-75.

    [23] SURYA MURALI R, PRAVEEN KUMAR K, ISMAIL A F, et al. Nanosilica and H-mordenite incorporated poly(ether-block-amide)-1657 membranes for gaseous separations[J]. Microporous and Mesoporous Materials, 2014, 197: 291-298.

    [24] WANG G, GUO R X, WANG W J, et al. Natural porous nanorods used for high-efficient capture and chemical conversion of CO2[J]. Journal of CO2 Utilization, 2020, 42: 101303.

    [25] OUYANG J, ZHENG C H, GU W, et al. Textural properties determined CO2 capture of tetraethylenepentamine loaded SiO2 nanowires from α-sepiolite[J]. Chemical Engineering Journal, 2018, 337: 342-350.

    [26] ZHANG T P, LI M, NING P, et al. K2CO3 promoted novel Li4SiO4-based sorbents from sepiolite with high CO2 capture capacity under different CO2 partial pressures[J]. Chemical Engineering Journal, 2020, 380: 122515.

    [27] LIU L B, CHEN H B, SHIKO E, et al. Low-cost DETA impregnation of acid-activated sepiolite for CO2 capture[J]. Chemical Engineering Journal, 2018, 353: 940-948.

    [28] WALCZYK A, MICHALIK A, NAPRUSZEWSKA B D, et al. New insight into the phase transformation of sepiolite upon alkali activation: impact on composition, structure, texture, and catalytic/sorptive properties[J]. Applied Clay Science, 2020, 195: 105740.

    [29] IRANI M, FAN M H, ISMAIL H, et al. Modified nanosepiolite as an inexpensive support of tetraethylenepentamine for CO2 sorption[J]. Nano Energy, 2015, 11: 235-246.

    [30] DELGADO J A, UGUINA M A, SOTELO J L, et al. Carbon dioxide/methane separation by adsorption on sepiolite[J]. Journal of Natural Gas Chemistry, 2007, 16(3): 235-243.

    [31] VILARRASA-GARCA E, CECILIA J A, BASTOS-NETO M, et al. Microwave-assisted nitric acid treatment of sepiolite and functionalization with polyethylenimine applied to CO2 capture and CO2/N2 separation[J]. Applied Surface Science, 2017, 410: 315-325.

    [32] SANTOS S S G, SILVA H R M, DE SOUZA A G, et al. Acid-leached mixed vermiculites obtained by treatment with nitric acid[J]. Applied Clay Science, 2015, 104: 286-294.

    [33] STAWIN'SKI W, FREITAS O, CHMIELARZ L, et al. The influence of acid treatments over vermiculite based material as adsorbent for cationic textile dyestuffs[J]. Chemosphere, 2016, 153: 115-129.

    [34] ZHANG Y, YU F, LOUIS B, et al. Scalable synthesis of the lithium silicate-based high-temperature CO2 sorbent from inexpensive raw material vermiculite[J]. Chemical Engineering Journal, 2018, 349: 562-573.

    [35] ZHANG Y, GAO Y S, YU F, et al. Synthesis of hierarchical Li4SiO4 nanoparticles/flakers composite from vermiculite/MCM-41 hybrid with improved CO2 capture performance under different CO2 concentrations[J]. Chemical Engineering Journal, 2019, 371: 424-432.

    [36] JEON P R, CHOI J, YUN T S, et al. Sorption equilibrium and kinetics of CO2 on clay minerals from subcritical to supercritical conditions: CO2 sequestration at nanoscale interfaces[J]. Chemical Engineering Journal, 2014, 255: 705-715.

    [38] OUYANG J, GU W, ZHANG Y, et al. CO2 capturing performances of millimeter scale beads made by tetraethylenepentamine loaded ultra-fine palygorskite powders from jet pulverization[J]. Chemical Engineering Journal, 2018, 341: 432-440.

    [40] YANG N N, LIU S Y, YANG X N. Molecular simulation of preferential adsorption of CO2 over CH4 in Na-montmorillonite clay material[J]. Applied Surface Science, 2015, 356: 1262-1271.

    [41] LIU Y L, HOU J. Selective adsorption of CO2/CH4 mixture on clay-rich shale using molecular simulations[J]. Journal of CO2 Utilization, 2020, 39: 101143.

    [42] SCHAEF H T, LORING J S, GLEZAKOU V A, et al. Competitive sorption of CO2 and H2O in 2∶1 layer phyllosilicates[J]. Geochimica et Cosmochimica Acta, 2015, 161: 248-257.

    [45] CHIANG Y C, JUANG R S. Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71: 214-234.

    [46] MARKEWITZ, ZHAO, RYSSEL, et al. Carbon capture for CO2 emission reduction in the cement industry in Germany[J]. Energies, 2019, 12(12): 2432.

    [49] RHIM J W, PARK H M, HA C S. Bio-nanocomposites for food packaging applications[J]. Progress in Polymer Science, 2013, 38(10/11): 1629-1652.

    LI Ruihong, LI Xiaoyu, LI Haoran, ZHAO Keping, PENG Kang. Structural Characteristics of Clay Minerals and Their Progress in CO2 Adsorption[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(1): 141
    Download Citation