• Bulletin of the Chinese Ceramic Society
  • Vol. 41, Issue 11, 4056 (2022)
XIANG Heng, ZHENG Ruipeng, and LI Jingwei
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article
    XIANG Heng, ZHENG Ruipeng, LI Jingwei. Research Progress of Stress Detection Methods for GlassMetal Sealed Electrical Penetration Assembly in Nuclear Power System[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4056 Copy Citation Text show less
    References

    [16] GUO H W, DANG M Y, LIU L, et al. Alkali Barium glasses for hermetic compression seals: compositional effect, processing, and sealing performance[J]. Ceramics International, 2019, 45(17): 2258922595.

    [19] SCHERER G W. Reaction in glass and composites[M]. Wiley, 1986.

    [22] FAN Z C, DIAO X Z, ZHANG Y, et al. Analysis of residual stress in electrical penetration assembly based on a fiber Bragg grating sensor[J]. Sensors (Basel, Switzerland), 2018, 19(1): 18.

    [23] WUNDER S L, SCHOEN P E. Pressure measurement at high temperatures in the diamond anvil cell[J]. Journal of Applied Physics, 1981, 52(6): 37723775.

    [24] MARSHALL D B, LAWN B R. An indentation technique for measuring stresses in tempered glass surfaces[J]. Journal of the American Ceramic Society, 1977, 60(1/2): 8687.

    [25] ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements[J]. Journal of the American Ceramic Society, 1981, 64(9): 533538.

    [26] RAJU I S, NEWMAN J C Jr. Stressintensity factors for a wide range of semielliptical surface cracks in finitethickness plates[J]. Engineering Fracture Mechanics, 1979, 11(4): 817829.

    [27] SNEDDON I N. The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile[J]. International Journal of Engineering Science, 1965, 3(1): 4757.

    [28] OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Materials Research, 1992, 7(6): 15641583.

    [29] OLIVER W C, PHARR G M. Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology[J]. Journal of Materials Research, 2004, 19(1): 320.

    [30] MA D J, ONG C W. Further analysis of energybased indentation relationship among Young’s modulus, nominal hardness, and indentation work[J]. Journal of Materials Research, 2010, 25(6): 11311136.

    [31] SOARES P C Jr, LEPIENSKI C M. Residual stress determination on lithium disilicate glassceramic by nanoindentation[J]. Journal of NonCrystalline Solids, 2004, 348: 139143.

    [32] PEITL O, SERBENA F C, MASTELARO V R, et al. Internal residual stress measurements in a bioactive glassceramic using vickers indentation[J]. Journal of the American Ceramic Society, 2010, 93(8): 23592368.

    [33] XIAO H X, WANG X M, LONG C S. Theoretical model for determining elastic modulus of ceramic materials by nanoindentation[J]. Materialia, 2021, 17: 101121.

    [36] RITO R L, CROCOMBE A D, OGIN S L. Health monitoring of composite patch repairs using CFBG sensors: experimental study and numerical modelling[J]. Composites Part A: Applied Science and Manufacturing, 2017, 100: 255268.

    [37] KAKEI A, EPAARACHCHI J A, ISLAM M, et al. Evaluation of delamination crack tip in woven fibre glass reinforced polymer composite using FBG sensor spectra and thermoelastic response[J]. Measurement, 2018, 122: 178185.

    [38] NING X G, MURAYAMA H, KAGEYAMA K, et al. Dynamic strain distribution measurement and crack detection of an adhesivebonded singlelap joint under cyclic loading using embedded FBG[J]. Smart Materials and Structures, 2014, 23(10): 105011.

    [39] OKABE Y, TSUJI R, TAKEDA N. Application of chirped fiber Bragg grating sensors for identification of crack locations in composites[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 5965.

    [40] OLIVEIRA R A, NEVES P T Jr, PEREIRA J T, et al. Numerical approach for designing a Bragg grating acoustooptic modulator using the finite element and the transfer matrix methods[J]. Optics Communications, 2008, 281(19): 48994905.

    [41] KIM S W. Characteristics of strain transfer and the reflected spectrum of a metalcoated fiber Bragg grating sensor[J]. Optics and Lasers in Engineering, 2017, 96: 8393.

    [42] HU K J, YAN H, FAN Z C, et al. In situ characterization of residual stress in glasstometal seal[J]. Ceramics International, 2019, 45(16): 2098320987.

    [43] FAN Z, HU K, HUANG Z, et al. Optimized sealing process and realtime monitoring of glasstometal seal structures[J]. Journal of Visualized Experiments, 2019(151).

    [44] COOK R F, MICHAELS C A. Review: coefficients for stress, temperature, and composition effects in fluorescence measurements of alumina[J]. Journal of Research of the National Institute of Standards and Technology, 2017, 122: 126.

    [45] JANNOTTI P, SUBHASH G, ZHENG J, et al. Measurement of microscale residual stresses in multiphase ceramic composites using Raman spectroscopy[J]. Acta Materialia, 2017, 129: 482491.

    [46] MUNRO R G, PIERMARINI G J, BLOCK S, et al. Model lineshape analysis for the ruby R lines used for pressure measurement[J]. Journal of Applied Physics, 1985, 57(2): 165169.

    [47] XU J A, MAO H K, BELL P M. Highpressure ruby and diamond fluorescence: observations at 0.21 to 0.55 terapascal[J]. Science, 1986, 232(4756): 14041406.

    [48] GRABNER L. Spectroscopic technique for the measurement of residual stress in sintered Al2O3[J]. Journal of Applied Physics, 1978, 49(2): 580583.

    [49] LI S H, ZHU Q Y, HU K J, et al. Determination of compressive stress in glasstometal seals using photoluminescence spectroscopy technique[J]. Ceramics International, 2022, 48(9): 1337913385.

    [50] MICHAELS C A, COOK R F. Determination of residual stress distributions in polycrystalline alumina using fluorescence microscopy[J]. Materials & Design, 2016, 107: 478490.

    [51] ESTEVES R, HERNANDEZ J, VO K, et al. Measurements for stress sensing of composites using tailored piezospectroscopic coatings[J]. AIP Advances, 2019, 9(5): 055201.

    [52] HOU W X, ZHAO S S, WANG T, et al. Manipulation of microwave magnetism in flexible La0.7Sr0.3MnO3 film by deformable ionic gel gating[J]. Applied Surface Science, 2021, 563: 150074.

    [53] POTAPOV A, SONG Y, MEADE T J, et al. Distance measurements in model bisGd(III) complexes with flexible “bridge”. Emulation of biological molecules having flexible structure with Gd(III) labels attached[J]. Journal of Magnetic Resonance, 2010, 205(1): 3849.

    [54] REICHARD K M, LINDNER D K, CLAUS R O. Vibration sensing in flexible structures using a distributedeffect modal domain optical fiber sensor[C]//Orlando ’91. Proc SPIE 1489, Structures Sensing and Control, Orlando, FL, USA. 1991, 1489: 218229.

    [55] VARSHNEYA A K, PETTI R J. Finite element analysis of stresses in glasstometal foil seals[J]. Journal of the American Ceramic Society, 1978, 61(11/12): 498503.

    [56] SOULES T F, BUSBEY R F, REKHSON S M, et al. Finiteelement calculation of stresses in glass parts undergoing viscous relaxation[J]. Journal of the American Ceramic Society, 1987, 70(2): 9095.

    [57] CHAMBERS R S, TANDON R, STAVIG M E. Characterization and calibration of a viscoelastic simplified potential energy clock model for inorganic glasses[J]. Journal of NonCrystalline Solids, 2016, 432: 545555.

    [58] LEI D Q, FU X Q, REN Y C, et al. Temperature and thermal stress analysis of parabolic trough receivers[J]. Renewable Energy, 2019, 136: 403413.

    [61] DAI S, ELISBERG B, CALDERONE J, et al. Sealing glassceramics with nearlinear thermal strain, part III: stress modeling of strain and strain rate matched glassceramic to metal seals[J]. Journal of the American Ceramic Society, 2017, 100(8): 36523661.

    XIANG Heng, ZHENG Ruipeng, LI Jingwei. Research Progress of Stress Detection Methods for GlassMetal Sealed Electrical Penetration Assembly in Nuclear Power System[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(11): 4056
    Download Citation