• Matter and Radiation at Extremes
  • Vol. 8, Issue 6, 064005 (2023)
Zheng Gong1, Michael J. Quin1, Simon Bohlen2, Christoph H. Keitel1, Kristjan Põder2, and Matteo Tamburini1
Author Affiliations
  • 1Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
  • 2Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
  • show less
    DOI: 10.1063/5.0152382 Cite this Article
    Zheng Gong, Michael J. Quin, Simon Bohlen, Christoph H. Keitel, Kristjan Põder, Matteo Tamburini. Spin-polarized electron beam generation in the colliding-pulse injection scheme[J]. Matter and Radiation at Extremes, 2023, 8(6): 064005 Copy Citation Text show less
    References

    [1] S.-Y.Lee. Accelerator Physics(2018).

    [2] R.Steele, R.Loevinger, M.Weissbluth, C.Karzmark. A technique for large-field, superficial electron therapy. Radiology, 74, 633-644(1960).

    [3] S. M.Qaim, B.Neumaier, I.Spahn, M.Hussain. Continuing nuclear data research for production of accelerator-based novel radionuclides for medical use: A mini-review. Front. Phys., 9, 639290(2021).

    [4] I.Hofmann. Review of accelerator driven heavy ion nuclear fusion. Matter Radiat. Extremes, 3, 1-11(2018).

    [5] S.M?ller. Accelerator Technology: Applications in Science, Medicine, and Industry(2020).

    [6] R. P.Godwin. Synchrotron radiation as a light source. Springer Tracts in Modern Physics: Ergebnisse der exakten Naturwissenschaften, Vol. 51, 1-73(1969).

    [7] D. A.Deacon, G.Ramian, L.Elias, J. M.Madey, T. I.Smith, H.Schwettman. First operation of a free-electron laser. Phys. Rev. Lett., 38, 892(1977).

    [8] R.Fitour, G.Lambert, S.Corde, A.Rousse, A.Beck, E.Lefebvre, K.Ta Phuoc, V.Malka. Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys., 85, 1(2013).

    [9] P.Zhang, C.Liu, J.Zhang, D.Haden, J.Luo, M.Chen, W.Yan, B.Zhao, G.Golovin, C.Fruhling et al. High-order multiphoton Thomson scattering. Nat. Photonics, 11, 514-520(2017).

    [10] Y.Ma, M.Streeter, S. J.Dann, A. E.Hussein, N.Senabulya, N.Bourgeois, S.Cipiccia, F.Albert, J. M.Cole, B.Kettle et al. Laser-wakefield accelerators for high-resolution x-ray imaging of complex microstructures. Sci. Rep., 9, 3249(2019).

    [11] N.Bourgeois, S.Dann, K.Falk, J.Cole, B.Kettle, R.Baggott, F.Albert, M.Streeter, E.Gerstmayr et al. Single-shot multi-keV X-ray absorption spectroscopy using an ultrashort laser-wakefield accelerator source. Phys. Rev. Lett., 123, 254801(2019).

    [12] X.Yang, L.Ke, M.Fang, C.Yu, R.Li, R.Qi, Y.Chen, Y.Leng, W.Wang, Z.Qin, Y.Xu, H.Wang, F.Wu, J.Liu, C.Wang, Z.Zhang, J.Liu, K.Jiang, Z.Xu, K.Feng. Free-electron lasing at 27 nanometres based on a laser wakefield accelerator. Nature, 595, 516-520(2021).

    [13] B. A.Kniehl, F.Bezrukov, M. Y.Kalmykov, M.Shaposhnikov. Higgs boson mass and new physics. J. High Energy Phys., 2012, 140.

    [14] T.Tajima, J.Dawson. Laser electron accelerator. Phys. Rev. Lett., 43, 267(1979).

    [15] W.Leemans, C.Schroeder, E.Esarey. Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys., 81, 1229(2009).

    [16] S.Steinke, T.De Raadt, J.Bin, C.Pieronek, A.Gonsalves, K.Nakamura, J.Van Tilborg, S.Bulanov, C.Benedetti, J.Daniels et al. Petawatt laser guiding and electron beam acceleration to 8 GeV in a laser-heated capillary discharge waveguide. Phys. Rev. Lett., 122, 084801(2019).

    [17] E.Lefebvre, J.Faure, S.Kiselev, V.Malka, S.Gordienko, J.-P.Rousseau, F.Burgy, A.Pukhov, Y.Glinec. A laser–plasma accelerator producing monoenergetic electron beams. Nature, 431, 541-544(2004).

    [18] C.Toth, D.Bruhwiler, W.Leemans, C.Nieter, C.Schroeder, J.Van Tilborg, E.Esarey, J.Cary, C.Geddes. High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature, 431, 538-541(2004).

    [19] S. P.Mangles, J.Gallacher, P.Foster, E.Divall, C.Murphy, A. E.Dangor, Z.Najmudin, J.Collier, A. G. R.Thomas, C.Hooker et al. Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature, 431, 535-538(2004).

    [20] Y.-Y.Chang, Z.Li, R.Zgadzaj, X.Zhang, W.Henderson, R.Korzekwa, N.Fazel, H.-E.Tsai, S.Yi, X.Wang et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV. Nat. Commun., 4, 1988(2013).

    [21] C.Benedetti, H.-S.Mao, K.Nakamura, J.Daniels, D.Mittelberger, S.Bulanov, A.Gonsalves, C.Tóth, W.Leemans, C.Schroeder et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett., 113, 245002(2014).

    [22] P.Messner, A. R.Maier, M.Schnepp, C.Werle, N. M.Delbos, L.Hübner, P.Winkler, T.Eichner, S.Jalas, P. A.Walker, V.Leroux, L.Jeppe, M.Trunk, S. W.Jolly, M.Kirchen. Decoding sources of energy variability in a laser-plasma accelerator. Phys. Rev. X, 10, 031039(2020).

    [23] C. A.Lindstr?m, F.Grüner, R.D’Arcy, T.Brümmer, J.Osterhoff, T.Staufer, J. C.Wood, M.Meisel, K.P?der, S.Bohlen. Stability of ionization-injection-based laser-plasma accelerators. Phys. Rev. Accel. Beams, 25, 031301(2022).

    [24] E.Esarey, W.Leemans. Laser-driven plasma-wave electron accelerators. Phys. Today, 62, 44-49(2009).

    [25] C.Benedetti, W. P.Leemans, S.Steinke, N. H.Matlis, E.Esarey, B. H.Shaw, J.Daniels, J.van Tilborg, K. K.Swanson, A. J.Gonsalves, C. G. R.Geddes, C. B.Schroeder, K.Nakamura. Multistage coupling of independent laser-plasma accelerators. Nature, 530, 190-193(2016).

    [26] P.Muggli, E.Gschwendtner. Plasma wakefield accelerators. Nat. Rev. Phys., 1, 246-248(2019).

    [27] A.Babich, G.Moortgat-Pick, T.Abe, A.Brachmann, G.Alexander, S.Chen, A.Bartl, V.Bharadwaj, D.Barber, B.Ananthanarayan et al. Polarized positrons and electrons at the linear collider. Phys. Rep., 460, 131-243(2008).

    [28] V.Shiltsev, F.Zimmermann. Modern and future colliders. Rev. Mod. Phys., 93, 015006(2021).

    [29] D.Del Sorbo, D.Seipt, C. P.Ridgers, A. G. R.Thomas. Theory of radiative electron polarization in strong laser fields. Phys. Rev. A, 98, 023417(2018).

    [30] F.Wan, R.Shaisultanov, C. H.Keitel, K. Z.Hatsagortsyan, Y.-F.Li, J.-X.Li. Ultrarelativistic electron-beam polarization in single-shot interaction with an ultraintense laser pulse. Phys. Rev. Lett., 122, 154801(2019).

    [31] R.Shaisultanov, K. Z.Hatsagortsyan, P.-L.He, C. H.Keitel, Y.-Y.Chen. Polarized positron beams via intense two-color laser pulses. Phys. Rev. Lett., 123, 174801(2019).

    [32] D.Del Sorbo, A. G. R.Thomas, D.Seipt, C. P.Ridgers. Ultrafast polarization of an electron beam in an intense bichromatic laser field. Phys. Rev. A, 100, 061402(R)(2019).

    [33] B.Feng, C.Qin, W.Wang, N.Wang, Q.Han, X.Geng, Z.Guo, B.Shen, Y.Wu, L.Ji et al. Spin-dependent radiative deflection in the quantum radiation-reaction regime. New J. Phys., 22, 013007(2020).

    [34] Y.-Y.Chen, R.Shaisultanov, R.-T.Guo, J.-X.Li, Z.-F.Xu, C. H.Keitel, K. Z.Hatsagortsyan, K.Xue, F.Wan, X.-G.Ren. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process. Fundam. Res., 2, 539-545(2022).

    [35] Y.-F.Li, C. H.Keitel, Y.-Y.Chen, K. Z.Hatsagortsyan. Helicity transfer in strong laser fields via the electron anomalous magnetic moment. Phys. Rev. Lett., 128, 174801(2022).

    [36] C. H.Keitel, M.Wen, M.Tamburini. Polarized laser-wakefield-accelerated kiloampere electron beams. Phys. Rev. Lett., 122, 214801(2019).

    [37] O.Vasyutinskii, G.Balint-Kurti, J.Beswick, A.Brown, P.Samartzis, T.Rakitzis, R.Toomes, T.Kitsopoulos. Spin-polarized hydrogen atoms from molecular photodissociation. Science, 300, 1936-1938(2003).

    [38] P.Glodic, P. C.Samartzis, A.Andreev, H.Jiang, T. P.Rakitzis, G.Koumarianou, L.Bougas, D.Sofikitis. Highly nuclear-spin-polarized deuterium atoms from the UV photodissociation of deuterium iodide. Phys. Rev. Lett., 118, 233401(2017).

    [39] D.Sofikitis, C. S.Kannis, G. K.Boulogiannis, T. P.Rakitzis. Ultrahigh-density spin-polarized H and D observed via magnetization quantum beats. Phys. Rev. Lett., 121, 083001(2018).

    [40] R.D’Arcy, F.Grüner, T.Staufer, M. C.Veale, S.Bohlen, C. A.Lindstr?m, M.Meisel, J. C.Wood, J.Osterhoff, K.P?der, T.Brümmer, M. J. V.Streeter. In situ measurement of electron energy evolution in a laser-plasma accelerator. Phys. Rev. Lett., 129, 244801(2022).

    [41] T.Witting, O.Kornilov, M. J. J.Vrakking, B.Schütte, L.Drescher, V.Shokeen. Extreme-ultraviolet spectral compression by four-wave mixing. Nat. Photonics, 15, 263-266(2021).

    [42] R.Engels, M.Büscher, A.Hützen, T. P.Rakitzis, J.Thomas, A.Pukhov, R.Gebel, J.B?ker, D.Sofikitis, A.Lehrach. Polarized proton beams from laser-induced plasmas. High Power Laser Sci. Eng., 7, e16(2019).

    [43] C.Qin, N.Wang, X.Yan, L.Ji, Y.Wu, Z.Guo, Q.Yu, B.Feng, W.Wang, X.Geng et al. Polarized electron-beam acceleration driven by vortex laser pulses. New J. Phys., 21, 073052(2019).

    [44] B.Feng, N.Wang, X.Yan, C.Qin, L.Ji, W.Wang, Q.Yu, Z.Guo, X.Geng, Y.Wu et al. Polarized electron acceleration in beam-driven plasma wakefield based on density down-ramp injection. Phys. Rev. E, 100, 043202(2019).

    [45] J.B?ker, T. P.Rakitzis, J.Thomas, R.Engels, A.Lehrach, A.Pukhov, R.Gebel, A.Hützen, I.Engin, M.Büscher, D.Sofikitis. Polarized proton beams from a laser-plasma accelerator. Int. J. Mod. Phys. A, 34, 1942028(2019).

    [46] B.Shen, M.Wen, L.Jin, X.Zhang, J.Thomas, A.Hützen, M.Büscher. Spin-polarized proton beam generation from gas-jet targets by intense laser pulses. Phys. Rev. E, 102, 011201(2020).

    [47] Z.Gong, Y.Shou, X.Yan, Y.Tang. Energetic spin-polarized proton beams from two-stage coherent acceleration in laser-driven plasma. Phys. Rev. E, 102, 053212(2020).

    [48] A.Hützen, M.Büscher, Y.Wu, A.Pukhov, X.Geng, A.Lehrach, J.Thomas, L.Ji. Scaling laws for the depolarization time of relativistic particle beams in strong fields. Phys. Rev. Accel. Beams, 23, 064401(2020).

    [49] X.Li, A.Hützen, M.Chen, M.Büscher, S.Weng, P.Gibbon, Z.Sheng. Polarized proton acceleration in ultraintense laser interaction with near-critical-density plasmas. Phys. Rev. E, 104, 015216(2021).

    [50] A.Pukhov, L.Reichwein, A.Hützen, M.Büscher. On the robustness of spin polarization for magnetic vortex accelerated proton bunches in density down-ramps. Plasma Phys. Controlled Fusion, 63, 085011(2021).

    [51] L.Reichwein, M.Büscher, A.Pukhov. Acceleration of spin-polarized proton beams via two parallel laser pulses. Phys. Rev. Accel. Beams, 25, 081001(2022).

    [52] M.Büscher, L.Reichwein, A.Pukhov, A.Hützen. Spin-polarized particle beams from laser-plasma based accelerators. J. Phys.: Conf. Ser., 2249, 012018(2022).

    [53] L.Reichwein. Particle acceleration in plasmas: Non-linear wakefields for leptons and magnetic vortices for spin-polarized protons(2022).

    [54] X. F.Li, H. C.Fan, S. M.Weng, X. Y.Liu, M.Büscher, Q.Kong, M.Chen, Z. M.Sheng, S.Kawata, P.Gibbon, J. F.Qu, Q.Yu. Control of electron beam polarization in the bubble regime of laser-wakefield acceleration. New J. Phys., 24, 083047(2022).

    [55] X.Geng, Y.Wu, L.Ji, X.Yan, B.Shen, H.Zhang. Generation of polarized proton beams with gaseous targets from CO2-laser-driven collisionless shock acceleration. Phys. Plasmas, 29, 053101(2022).

    [56] Z.Tao, H.Zhou, Y.Ding, M.Lv, S.Zou, R.Hu. Spin depolarization induced by self-generated magnetic fields during cylindrical implosions. Phys. Rev. E, 102, 043215(2020).

    [57] D.Matteo, F.Morales, F.Tsung, S.Patchkovskii, N.Nambu, K. A.Marsh, Z.Nie, F.Li, C.Joshi, W.An, O.Smirnova, W. B.Mori. In situ generation of high-energy spin-polarized electrons in a beam-driven plasma wakefield accelerator. Phys. Rev. Lett., 126, 054801(2021).

    [58] D.Umstadter, J. K.Kim, E.Dodd. Laser injection of ultrashort electron pulses into wakefield plasma waves. Phys. Rev. Lett., 76, 2073-2076(1996).

    [59] R.Hubbard, W.Leemans, A.Ting, E.Esarey, P.Sprangle. Electron injection into plasma wakefields by colliding laser pulses. Phys. Rev. Lett., 79, 2682(1997).

    [60] C.Rechatin, Y.Glinec, J.Faure, A.Norlin, A.Lifschitz, V.Malka. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses. Nature, 444, 737-739(2006).

    [61] H.Kotaki, K.Kawase, I.Daito, L.-M.Chen, Y.Fukuda, J.Ma, Y.Hayashi, M.Kando, T.Kameshima, T.Homma et al. Electron optical injection with head-on and countercrossing colliding laser pulses. Phys. Rev. Lett., 103, 194803(2009).

    [62] C.Rechatin, A.Specka, J.Lim, A.Ben-Isma?l, R.Fitour, A.Tafzi, H.Videau, V.Malka, J.Faure, F.Burgy. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator. Phys. Rev. Lett., 102, 164801(2009).

    [63] L.Ammoura, X.Davoine, G.Gallot, C.Rechatin, J.Faure, J.-P.Goddet, O.Lundh, A.Ben-Isma?l, E.Lefebvre, J.Lim, V.Malka. Few femtosecond, few kiloampere electron bunch produced by a laser–plasma accelerator. Nat. Phys., 7, 219-222(2011).

    [64] J.Faure, X.Davoine, E.Lefebvre, C.Rechatin, V.Malka. Cold optical injection producing monoenergetic, multi-GeV electron bunches. Phys. Rev. Lett., 102, 065001(2009).

    [65] E.Lefebvre, J. K.Lim, A.Ben-Ismail, J.Faure, X.Davoine, C.Rechatin, V.Malka. Laser-driven accelerators by colliding pulses injection: A review of simulation and experimental results. Phys. Plasmas, 16, 056703(2009).

    [66] M.Hansson, O.Lundh, A.Persson, H.Ekerfelt, B.Aurand. Injection of electrons by colliding laser pulses in a laser wakefield accelerator. Nucl. Instrum. Methods Phys. Res., Sect. A, 829, 99-103(2016).

    [67] K.P?der, Z.Gong, M.Tamburini, M. J.Quin, S.Bohlen. Colliding pulse injection of polarized electron bunches in a laser-plasma accelerator. Phys. Rev. Res., 5(2023).

    [68] J.-L.Vay, M.Kirchen, I. A.Andriyash, R.Lehe, B. B.Godfrey. A spectral, quasi-cylindrical and dispersion-free particle-in-cell algorithm. Comput. Phys. Commun., 203, 66-82(2016).

    [69] C. P.Ridgers, K.Bennett, T.Arber, H.Schmitz, R.Evans, M.Ramsay, N.Sircombe, C.Brady, A.Bell, P.Gillies, A.Lawrence-Douglas. Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Controlled Fusion, 57, 113001(2015).

    [70] P.Ehrenfest. Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik. Z. Phys., 45, 455-457(1927).

    [71] L. H.Thomas. I. The kinematics of an electron with an axis. London, Edinburgh, Dublin Philos. Mag. J. Sci., 3, 1-22(1927).

    [72] L.Michel, V.Telegdi, V.Bargmann. Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett., 2, 435(1959).

    [73] L.Silva, C.-K.Huang, J.Vieira, W.Mori. Polarized beam conditioning in plasma based acceleration. Phys. Rev. Spec. Top.-Accel. Beams, 14, 071303(2011).

    [74] C. H.Keitel, K. Z.Hatsagortsyan, Z.Gong. Retrieving transient magnetic fields of ultrarelativistic laser plasma via ejected electron polarization. Phys. Rev. Lett., 127, 165002(2021).

    [75] C. H.Keitel, K. Z.Hatsagortsyan, Z.Gong. Deciphering in situ electron dynamics of ultrarelativistic plasma via polarization pattern of emitted γ-photons. Phys. Rev. Res., 4, L022024(2022).

    [76] K. Z.Hatsagortsyan, C. H.Keitel, Z.Gong. Electron polarization in ultrarelativistic plasma current filamentation instabilities. Phys. Rev. Lett., 130, 015101(2023).

    [77] F.Pegoraro, M.Tamburini, A.Macchi, A.Di Piazza, C. H.Keitel. Radiation reaction effects on radiation pressure acceleration. New J. Phys., 12, 123005(2010).

    [78] M.Tamburini, A.Macchi, C. H.Keitel, A.Di Piazza, F.Pegoraro, T. V.Liseykina. Radiation reaction effects on electron nonlinear dynamics and ion acceleration in laser–solid interaction. Nucl. Instrum. Methods Phys. Res., Sect. A, 653, 181-185(2011).

    [79] M.Wen, C. H.Keitel, H.Bauke. Identifying the Stern-Gerlach force of classical electron dynamics. Sci. Rep., 6, 31624(2016).

    [80] C. H.Keitel, H.Bauke, M.Wen. Spin-one-half particles in strong electromagnetic fields: Spin effects and radiation reaction. Phys. Rev. A, 95, 042102(2017).

    [81] A. A.Sokolov, I. M.Ternov. Synchrotron radiation. Sov. Phys. J., 10, 39-47(1967).

    [82] P.Mulser, D.Bauer, W. H.Steeb. Relativistic ponderomotive force, uphill acceleration, and transition to chaos. Phys. Rev. Lett., 75, 4622-4625(1995).

    [83] Y.Sentoku, K.Mima, J.Meyer-ter Vehn, Z.-M.Sheng, T.Taguchi, M.Jovanovi?, J.Zhang. Stochastic heating and acceleration of electrons in colliding laser fields in plasma. Phys. Rev. Lett., 88, 055004(2002).

    [84] B.Qiao, R.Hu, F.Xu, X.Yan, C.Chen, Z.Gong, Y.Shou, X.He. Radiation reaction induced spiral attractors in ultra-intense colliding laser beams. Matter Radiat. Extremes, 1, 308-315(2016).

    [85] Y.Shou, Z.Gong, R.Hu, J.Yu, X.Yan, A.Arefiev. Radiation rebound and quantum splash in electron-laser collisions. Phys. Rev. Accel. Beams, 22, 093401(2019).

    [86] X.Yan, A.Arefiev, Z.Gong, F.Mackenroth. Radiation reaction as an energy enhancement mechanism for laser-irradiated electrons in a strong plasma magnetic field. Sci. Rep., 9, 17181(2019).

    [87] A. P.Robinson, G.Chen, D. W.Schumacher, G. E.Cochran, A. V.Arefiev. Temporal resolution criterion for correctly simulating relativistic electron motion in a high-intensity laser field. Phys. Plasmas, 22, 013103(2015).

    [88] E.Esarey, M.Pilloff. Trapping and acceleration in nonlinear plasma waves. Phys. Plasmas, 2, 1432-1436(1995).

    [89] C. G.Geddes, E.Esarey, S.Hooker, C.Schroeder, K.Nakamura, B.Nagler, A. J.Gonsalves, C.Tóth, W. P.Leemans. GeV electron beams from a centimetre-scale accelerator. Nat. Phys., 2, 696-699(2006).

    [90] Here the potential φ(ξ) in the Hamiltonian H is obtained from the Ex at y = 0 of the 2D PIC simulation [see the black dashed line in Fig. 6(a)].

    [91]

    [92] H. A.Tolhoek. Electron polarization, theory and experiment. Rev. Mod. Phys., 28, 277-298(1956).

    [93] Precision measurement of the weak charge of the proton. Nature, 557, 207-211(2018).

    [94] M.Tamburini. Radiation reaction effects in superintense laser-plasma interaction(2011).

    Zheng Gong, Michael J. Quin, Simon Bohlen, Christoph H. Keitel, Kristjan Põder, Matteo Tamburini. Spin-polarized electron beam generation in the colliding-pulse injection scheme[J]. Matter and Radiation at Extremes, 2023, 8(6): 064005
    Download Citation