• Matter and Radiation at Extremes
  • Vol. 6, Issue 3, 038403 (2021)
Leilei Zhang, Hua Y. Genga), and Q. Wu
Author Affiliations
  • National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O. Box 919-102, Mianyang, Sichuan 621900, People’s Republic of China
  • show less
    DOI: 10.1063/5.0043276 Cite this Article
    Leilei Zhang, Hua Y. Geng, Q. Wu. Prediction of anomalous LA-TA splitting in electrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038403 Copy Citation Text show less
    References

    [1] K.Huang, M.Born. Dynamical Theory of Crystal Lattices(1954).

    [2] N. W.Ashcroft, N. D.Mermin. Solid State Physics(1976).

    [3] S. S.Mitra. Grüneisen parameter for long wavelength optical modes in ionic crystals. Phys. Status Solidi, 9, 519(1965).

    [4] A. S.Barker, H. W.Verleur. Long wavelength optical phonon vibrations in mixed crystals. Solid State Commun., 5, 695(1967).

    [5] S. S.Mitra, J. R.Ferraro, C.Postmus. Pressure dependence of long-wavelength optical phonons in ionic crystals. Phys. Rev. Lett., 18, 455(1967).

    [6] M. C.Abramo, M. P.Tosi, D. E.Thornton, M.Parrinello. Optical modes in binary alloys. Phys. Lett. A, 43, 483(1973).

    [7] J. R.Sambles, F.Yang, R. J.Crook. Long-range optical modes supported by a strongly absorbing thin organic film. J. Opt. Soc. Am. B, 10, 237(1993).

    [8] G.Komandin, S.Chuchupal, I.Spektor, A.Volkov, O.Porodinkov. Giant LO-TO frequency splitting of the soft mode in perovskites. Ferroelectrics, 463, 1(2014).

    [9] J. S.Landers, M. J.Sienko, A.Stacy, J. L.Dye. Temperature-dependent electron spin interactions in lithium [2.1.1] cryptate electride powders and films. J. Phys. Chem., 85, 1096(1981).

    [10] M.Miyakawa, Y.Toda, S.Matsuishi, I.Tanaka, H.Hosono, M.Hirano, K.Hayashi, T.Kamiya. High-density electron anions in a nanoporous single crystal:[Ca24Al28O64] 4+(4e-). Science, 301, 626(2003).

    [11] M.-S.Miao, R.Hoffmann. High pressure electrides: A predictive chemical and physical theory. Acc. Chem. Res., 47, 1311(2014).

    [12] Y.Zhang, L.Zhang, Y.Wang, H.Wang, Y.Ma. Computer-assisted inverse design of inorganic electrides. Phys. Rev. X, 7, 011017(2017).

    [13] L. A.Burton, F.Ricci, G.-M.Rignanese, W.Chen, G.Hautier. High-throughput identification of electrides from all known inorganic materials. Chem. Mater., 30, 7521(2018).

    [14] Q.Zhu, K.Choudhary, T.Frolov. Computational discovery of inorganic electrides from an automated screening. Matter, 1, 1293(2019).

    [15] P.Li, Y.Wang, G.Gao, Y.Ma. Crystal structures and exotic behavior of magnesium under pressure. J. Phys. Chem. C, 114, 021745(2010).

    [16] R. J.Needs, C. J.Pickard. Aluminium at terapascal pressures. Nat. Mater., 9, 624(2010).

    [17] M.Martinez-Canales, R. J.Needs, C. J.Pickard. Thermodynamically stable phases of carbon at multiterapascal pressures. Phys. Rev. Lett., 108, 045704(2012).

    [18] Y.-M.Chen, Q.Wu, H.-Y.Geng, X.-Z.Yan, X.-R.Chen, Z.-W.Wang. Predicted novel insulating electride compound between alkali metals lithium and sodium under high pressure. Chin. Phys. B, 26, 056102(2017).

    [19] W.Kong, M.Yang, Y. P.Feng, J.Zhou, H.Cheng, L.Shen. Discovery of hidden classes of layered electrides by extensive high-throughput material screening. Chem. Mater., 31, 1860(2019).

    [20] H.Gou, B.Wan, L.Wu, J.Zhang. High-pressure electrides: From design to synthesis. Chin. Phys. B, 28, 106201(2019).

    [21] J. L.Dye. Electrides: Ionic salts with electrons as the anions. Science, 247, 663(1990).

    [22] H.Krakauer, C.Haas, D. J.Singh, W. E.Pickett. Theoretical determination that electrons act as anions in the electride Cs+ (15-crown-5)2·e. Nature, 365, 39(1993).

    [23] J. L.Dye. Electrons as anions. Science, 301, 607(2003).

    [24] G.Yang, X.Zhang. Recent advances and applications of inorganic electrides. J. Phys. Chem. Lett., 11, 3841(2020).

    [25] N. W.Ashcroft, J. B.Neaton. Pairing in dense lithium. Nature, 400, 141(1999).

    [26] E.Gregoryanz, M. I.McMahon, C. J.Pickard, G. J.Ackland, C. L.Guillaume, R. J.Nelmes, M.Hanfland, M.Marqués. Crystal structures of dense lithium: A metal-semiconductor-metal transition. Phys. Rev. Lett., 106, 095502(2011).

    [27] Y.Ma, Y.Xie, M.Valle, V.Prakapenka, I.Trojan, S.Medvedev, A. O.Lyakhov, A. R.Oganov, M.Eremets. Transparent dense sodium. Nature, 458, 182(2009).

    [28] Y.Sun, Z.Yu, H. Y.Geng, Y.Chen. Optical properties of dense lithium in electride phases by first-principles calculations. Sci. Rep., 8, 3868(2018).

    [29] D.Alfè. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun., 180, 2622(2009).

    [30] S. A.Bonev, D. N.Polsin, S. X.Hu, V. V.Karasiev, R.Paul. Thermal effects on the electronic properties of sodium electride under high pressures. Phys. Rev. B, 102, 094103(2020).

    [31] M.-s.Miao, R.Hoffmann. High-pressure electrides: The chemical nature of interstitial quasiatoms. J. Am. Chem. Soc., 137, 3631(2015).

    [32] J.Botana, I. I.Naumov, M.-s.Miao, R.Hoffmann, R. J.Hemley. Quasimolecules in compressed lithium. Angew. Chem., Int. Ed., 56, 972(2016).

    [33] R. F. W.Bader. Atoms in molecules: A quantum theory. J. Mol. Struct.: THEOCHEM, 360, 1(1996).

    [34] G.Henkelman, W.Tang, E.Sanville. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter, 21, 084204(2009).

    [35] P.Hohenberg, W.Kohn. Inhomogeneous electron gas. Phys. Rev., 136, B864(1964).

    [36] L. J.Sham, W.Kohn. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev., 137, A1697(1965).

    [37] G.Kresse, J.Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 011169(1996).

    [38] G.Kresse, J.Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6, 15(1996).

    [39] G.Kresse, D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758(1999).

    [40] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 017953(1994).

    [41] J. P.Perdew, M.Ernzerhof, K.Burke. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865(1996).

    [42] R.Resta, S.Baroni. Ab initio calculation of the macroscopic dielectric constant in silicon. Phys. Rev. B, 33, 7017(1986).

    [43] R.Smith, E.Sanville, G.Henkelman, S. D.Kenny. An improved grid-based algorithm for Bader charge allocation. J. Comput. Chem., 28, 899(2007).

    [44] A.Arnaldsson, H.Jónsson, G.Henkelman. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci., 36, 354(2006).

    [45] D. R.Trinkle, M.Yu. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys., 134, 064111(2011).

    [46] H. Y.Geng, Q.Wu, Y.Chen, Y.Sun, S.Li, X.Yan, L.Zhang. Interplay of anionic quasi-atoms and interstitial point defects in electrides: Abnormal interstice occupation and colossal charge state of point defects in dense fcc-lithium. ACS Appl. Mater. Interfaces, 13, 6130(2021).

    Leilei Zhang, Hua Y. Geng, Q. Wu. Prediction of anomalous LA-TA splitting in electrides[J]. Matter and Radiation at Extremes, 2021, 6(3): 038403
    Download Citation