• Advanced Imaging
  • Vol. 1, Issue 2, 021005 (2024)
Siyuan Yin1,2,†, Shibao Wu1,2, Zhanming Li1,2, Haoran Lu1,2..., Zhiyao Wang1,2, Zengquan Yan1,2 and Xianmin Jin1,2,3,*|Show fewer author(s)
Author Affiliations
  • 1Center for Integrated Quantum Information Technologies (IQIT), School of Physics and Astronomy and State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai, China
  • 2Hefei National Laboratory, Hefei, China
  • 3Chip Hub for Integrated Photonics Xplore (CHIPX), Shanghai Jiao Tong University, Wuxi, China
  • show less
    DOI: 10.3788/AI.2024.10011 Cite this Article Set citation alerts
    Siyuan Yin, Shibao Wu, Zhanming Li, Haoran Lu, Zhiyao Wang, Zengquan Yan, Xianmin Jin, "Photonic timestamped confocal microscopy," Adv. Imaging 1, 021005 (2024) Copy Citation Text show less
    References

    [1] G. Brakenhoff et al. Three-dimensional imaging in fluorescence by confocal scanning microscopy. J. Microsc., 153, 151(1989).

    [2] T. A. Klar, S. W. Hell. Subdiffraction resolution in far-field fluorescence microscopy. Opt. Lett., 24, 954(1999).

    [3] E. Betzig et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642(2006).

    [4] M. J. Rust, M. Bates, X. Zhuang. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods, 3, 793(2006).

    [5] J. Icha et al. Phototoxicity in live fluorescence microscopy, and how to avoid it. BioEssays, 39, 1700003(2017).

    [6] P. A. Duffy. Cell culture phototoxicity test. In Vitro Toxicity Testing Protocols, 219(1995).

    [7] S. Lock, J. Friend. Phototoxicity testing in vitro: evaluation of mammalian cell culture techniques. Food Chem. Toxicol, 24, 789(1986).

    [8] R. Dixit, R. Cyr. Cell damage and reactive oxygen species production induced by fluorescence microscopy: effect on mitosis and guidelines for non-invasive fluorescence microscopy. Plant J, 36, 280(2003).

    [9] J. W. Dobrucki, D. Feret, A. Noatynska. Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for frap studies. Biophys. J., 93, 1778(2007).

    [10] B. F. Godley et al. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Biol. Chem., 280, 21061(2005).

    [11] A. J. Berglund. Nonexponential statistics of fluorescence photobleaching. J. Chem. Phys., 121, 2899(2004).

    [12] G. H. Patterson, D. W. Piston. Photobleaching in two-photon excitation microscopy. Biophys. J, 78, 2159(2000).

    [13] E. Turk et al. Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter. Nature, 350, 354(1991).

    [14] J. C. Canul-Tec et al. Structure and allosteric inhibition of excitatory amino acid transporter 1. Nature, 544, 446(2017).

    [15] J. Yao et al. Label-free oxygen-metabolic photoacoustic microscopy in vivo. J Biomed Opt, 16, 076003(2011).

    [16] P. Hai et al. High-throughput, label-free, single-cell photoacoustic microscopy of intratumoral metabolic heterogeneity. Nat. Biomed. Eng., 3, 381(2019).

    [17] A. Maccarone et al. Three-dimensional imaging of stationary and moving targets in turbid underwater environments using a single-photon detector array. Opt. Express, 27, 28437(2019).

    [18] A. Maccarone et al. Underwater depth imaging using time-correlated single-photon counting. Opt. Express, 23, 33911(2015).

    [19] A. Maccarone et al. Underwater depth imaging using time-correlated single-photon counting at video frame rates. Electro-Optical Remote Sensing XIII, 11160, 125(2019).

    [20] M. Aßmann et al. Higher-order photon bunching in a semiconductor microcavity. Science, 325, 297(2009).

    [21] J. Wiersig et al. Direct observation of correlations between individual photon emission events of a microcavity laser. Nature, 460, 245(2009).

    [22] M. Aßmann et al. Ultrafast tracking of second-order photon correlations in the emission of quantum-dot microresonator lasers. Phys. Rev. B Condens., 81, 165314(2010).

    [23] O. Schwartz et al. Superresolution microscopy with quantum emitters. Nano Lett., 13, 5832(2013).

    [24] M. P. Edgar et al. Imaging high-dimensional spatial entanglement with a camera. Nat. Commun., 3, 984(2012).

    [25] R. Chrapkiewicz et al. Hologram of a single photon. Nat. Photonics, 10, 576(2016).

    [26] W.-J. Dou et al. Highly sensitive diamond x-ray detector array for high-temperature applications. Chip, 100106(2024).

    [27] C. Yang et al. High-fidelity image reconstruction for compressed ultrafast photography via an augmented-Lagrangian and deep-learning hybrid algorithm. Photonics Res., 9, B30(2021).

    [28] N. Bhusal et al. Spatial mode correction of single photons using machine learning. Adv. Quantum Technol., 4, 2000103(2021).

    [29] Z.-M. Li et al. Fast correlated-photon imaging enhanced by deep learning. Optica, 8, 323(2021).

    [30] P. Wang, J. Liang, L. V. Wang. Single-shot ultrafast imaging attaining 70 trillion frames per second. Nat. Commun., 11, 2091(2020).

    [31] J.-W. Yang et al. Deep-learning based on-chip rapid spectral imaging with high spatial resolution. Chip, 2, 100045(2023).

    [32] M. A. Broome et al. Photonic boson sampling in a tunable circuit. Science, 339, 794(2013).

    [33] M. Bentivegna et al. Experimental scattershot boson sampling. Sci. Adv., 1, e1400255(2015).

    [34] K. Sun et al. Mapping and measuring large-scale photonic correlation with single-photon imaging. Optica, 6, 244(2019).

    [35] J. Gao et al. Quantum advantage with membosonsampling. Chip, 1, 100007(2022).

    [36] A. Peruzzo et al. Quantum walks of correlated photons. Science, 329, 1500(2010).

    [37] K. Poulios et al. Quantum walks of correlated photon pairs in two-dimensional waveguide arrays. Phys. Rev. Lett., 112, 143604(2014).

    [38] J. O. Owens et al. Two-photon quantum walks in an elliptical direct-write waveguide array. New J. Phys., 13, 075003(2011).

    [39] J. Gao et al. Non-classical photon correlation in a two-dimensional photonic lattice. Opt. Express, 24, 12607(2016).

    [40] Z.-Q. Yan et al. Underwater photon-inter-correlation optical communication. Photonics Res., 9, 2360(2021).

    [41] C.-Z. Peng et al. Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett., 94, 150501(2005).

    [42] X.-M. Jin et al. Experimental free-space quantum teleportation. Nat. Photonics, 4, 376(2010).

    [43] O. S. Magaña-Loaiza, R. W. Boyd. Quantum imaging and information. Rep. Prog. Phys., 82, 124401(2019).

    [44] P.-A. Moreau et al. Ghost imaging using optical correlations. Laser Photonics Rev., 12, 1700143(2018).

    [45] P.-A. Moreau et al. Imaging with quantum states of light. Nat. Rev. Phys., 1, 367(2019).

    [46] M. Gilaberte Basset et al. Perspectives for applications of quantum imaging. Laser Photonics Rev., 13, 1900097(2019).

    [47] A. Kirmani et al. First-photon imaging. Science, 343, 58(2014).

    [48] M. O’Toole, D. B. Lindell, G. Wetzstein. Confocal non-line-of-sight imaging based on the light-cone transform. Nature, 555, 338(2018).

    [49] C. Wu et al. Non–line-of-sight imaging over 1.43 km. Proc. Natl. Acad. Sci. USA, 118, e2024468118(2021).

    [50] J.-T. Ye et al. Compressed sensing for active non-line-of-sight imaging. Opt. Express, 29, 1749(2021).

    [51] M. T. McCann, K. H. Jin, M. Unser. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process. Mag., 34, 85(2017).

    [52] A. Lucas et al. Using deep neural networks for inverse problems in imaging: beyond analytical methods. IEEE Signal Process. Mag., 35, 20(2018).

    [53] G. Barbastathis, A. Ozcan, G. Situ. On the use of deep learning for computational imaging. Optica, 6, 921(2019).

    [54] C. Qiao et al. Evaluation and development of deep neural networks for image super-resolution in optical microscopy. Nat. Methods, 18, 194(2021).

    [55] Y. Maruyama, E. Charbon. An all-digital, time-gated 128x128 spad array for on-chip, filter-less fluorescence detection, 1180(2011).

    [56] F. Chen, P. W. Tillberg, E. S. Boyden. Expansion microscopy. Science, 347, 543(2015).

    [57] T. J. Chozinski et al. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods, 13, 485(2016).

    [58] J.-B. Chang et al. Iterative expansion microscopy. Nat. Methods, 14, 593(2017).

    [59] D. Gambarotto et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods, 16, 71(2019).

    [60] J. Schnitzbauer et al. Super-resolution microscopy with DNA-PAINT. Nat. Protoc., 12, 1198(2017).

    [61] S. K. Saka et al. Immuno-saber enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol., 37, 1080(2019).

    [62] Y. Zhang et al. Noninvasive photoacoustic microscopy of living cells in two and three dimensions through enhancement by a metabolite dye. Angew. Chem., 123, 7497(2011).

    [63] D. M. Chow et al. Deep three-photon imaging of the brain in intact adult zebrafish. Nat. Methods, 17, 605(2020).

    [64] T. Wang, C. Xu. Three-photon neuronal imaging in deep mouse brain. Optica, 7, 947(2020).