• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 7, 1783 (2023)
HUANG Shaokun1,2,*, LUO Liming2,3, SUN Hongjuan1,2, PENG Tongjiang2, and CHEN Shize1,2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: Cite this Article
    HUANG Shaokun, LUO Liming, SUN Hongjuan, PENG Tongjiang, CHEN Shize. Influence of Saline Sulfuric Acid Treatment on Vermiculite Process and Its Mechanism[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1783 Copy Citation Text show less
    References

    [1] HAO W D, FLYNN S, KASHIWABARA T, et al. The impact of ionic strength on the proton reactivity of clay minerals[J]. Chem Geol, 2019, 529: 119294.

    [2] HAZEN R M, SVERJENSKY D A, AZZOLINI D, et al. Clay mineral evolution[J]. Am Mineral, 2013, 98(11/12): 2007-2029.

    [3] MURAKAMI T, UTSUNOMIYA S, YOKOYAMA T, et al. Biotite dissolution processes and mechanisms in the laboratory and in nature: Early stage weathering environment and vermiculitization[J]. Am Mineral, 2003, 88(2/3): 377-386.

    [4] BIONDINO D, BORRELLI L, CRITELLI S, et al. A multidisciplinary approach to investigate weathering processes affecting gneissic rocks (Calabria, southern Italy)[J]. Catena, 2020, 187: 104372.

    [5] MURAKAMI T, IT J, UTSUNOMIYA S, et al. Anoxic dissolution processes of biotite: implications for Fe behavior during Archean weathering[J]. Earth Planet Sci Lett, 2004, 224(1/2): 117-129.

    [6] JEONG G Y, BIN KIM H. Mineralogy, chemistry, and formation of oxidized biotite in the weathering profile of granitic rocks[J]. Am Mineral, 2003, 88(2/3): 352-364.

    [7] SOLIN S A. Clays and clay intercalation compounds: properties and physical phenomena[J]. Annu Rev Mater Sci, 1997, 27: 89-115.

    [8] BASSETT W A, MATERIALS P. The origin of the vermiculite deposit at Libby, Montana[J]. Am Mineral, 1959, 44(3/4): 282-299.

    [9] KULP J L, BROBST D A. Notes on the dunite and the geochemistry of vermiculite at the day book dunite deposit, yancey county, north carolina[J]. Econ Geol, 1954, 49(2): 211-220.

    [10] WALKER G F. Trioctahedral minerals in the soil-clays of north-east Scotland[J]. Mineral Mag J Mineral Soc, 1950, 29(208): 72-84.

    [11] VELBEL M A. Geochemical mass balances and weathering rates in forested watersheds of the southern Blue Ridge[J]. Am J Sci, 1985, 285(10): 904-930.

    [12] GILKES R J, SUDDHIPRAKARN A. Biotite alteration in deeply weathered granite. I. morphological, mineralogical, and chemical properties[J]. Clays Clay Miner, 1979, 27(5): 349-360.

    [13] HODA S N, HOOD W C. Laboratory alteration of trioctahedral micas[J]. Clays Clay Miner, 1972, 20(6): 343-358.

    [14] FARMER V C, RUSSELL J D, MCHARDY W J, et al. Evidence for loss of protons and octahedral iron from oxidized biotites and vermiculites[J]. Mineral Mag, 1971, 38(294): 121-137.

    [15] MA T, SUN H J, PENG T J, et al. Transformation process from phlogopite to vermiculite under hydrothermal conditions[J]. Appl Clay Sci, 2021, 208: 106094.

    [17] BOJRQUEZ-QUINTAL E, ESCALANTE-MAGAA C, ECHEVARRA-MACHADO I, et al. Aluminum, a friend or foe of higher plants in acid soils[J]. Front Plant Sci, 2017, 8: 1767.

    [18] TAN K H. Degradation of soil minerals by organic acids[J]. Interactions of soil minerals with natural organics microbes, 1986, 17: 1-27.

    [19] INOUE K, HUANG P M. Influence of citric acid on the natural formation of imogolite[J]. Nature, 1984, 308(5954): 58-60.

    [20] SANTELLI C M, WELCH S A, WESTRICH H R, et al. The effect of Fe-oxidizing bacteria on Fe-silicate mineral dissolution[J]. Chem Geol, 2001, 180(1-4): 99-115.

    [21] DOPSON M, LVGREN L, BOSTRM D. Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleaching[J]. Hydrometallurgy, 2009, 96(4): 288-293.

    [22] BIGHAM J M, BHATTI T M, VUORINEN A, et al. Dissolution and structural alteration of phlogopite mediated by proton attack and bacterial oxidation of ferrous iron[J]. Hydrometallurgy, 2001, 59(2/3): 301-309.

    [23] ANDRADE G R P, FURQUIM S A C, DO NASCIMENTO T T V, et al. Transformation of clay minerals in salt-affected soils, Pantanal wetland, Brazil[J]. Geoderma, 2020, 371: 114380.

    [24] WAROSZEWSKI J, EGLI M, KABALA C, et al. Mass fluxes and clay mineral formation in soils developed on slope deposits of the Kowarski Grzbiet (Karkonosze Mountains, Czech Republic/Poland)[J]. Geoderma, 2016, 264: 363-378.

    [25] MCKEAGUE J A, CHESHIRE M V, ANDREUX F, et al. Organo-mineral complexes in relation to pedogenesis[M]//SSSA Special Publication. Madison, WI, USA: Soil Science Society of America, 2015: 549-592.

    [26] DREVER J I, VANCE G F. Role of soil organic acids in mineral weathering processes[M]//PITTMAN ED, LEWAN MD. Organic Acids in Geological Processes. Berlin, Heidelberg: Springer, 1994: 138-161.

    [27] WU H Y, QIANG S R, FAN Q H, et al. Exploring the relationship between Th(IV) adsorption and the structure alteration of phlogopite[J]. Appl Clay Sci, 2018, 152: 295-302.

    [28] MENG P, LI Z Q, HUANG Z L, et al. Extraction of potassium from biotite by Ba2+/K+ ion exchange and the structural transformation[J]. Phys Chem Minerals, 2016, 43(6): 387-393.

    [29] ACKER J G, BRICKER O P. The influence of pH on biotite dissolution and alteration kinetics at low temperature[J]. Geochimica Cosmochimica Acta, 1992, 56(8): 3073-3092.

    [30] NIU H, KINNUNEN P, SREENIVASAN H, et al. Structural collapse in phlogopite mica-rich mine tailings induced by mechanochemical treatment and implications to alkali activation potential[J]. Miner Eng, 2020, 151: 106331.

    [32] FENG J P, LIU M, FU L Z, et al. Enhancement and mechanism of vermiculite thermal expansion modified by sodium ions[J]. RSC Adv, 2020, 10(13): 7635-7642.

    [33] TOLPESHTA I I, SOKOLOVA T A, VOROB’EVA A A, et al. Transformation of trioctahedral mica in the upper mineral horizon of podzolic soil during the two-year-long field experiment[J]. Eurasian Soil Sci, 2018, 51(7): 843-856.

    [34] GRAMP J P, JONES F S, BIGHAM J M, et al. Monovalent cation concentrations determine the types of Fe(III) hydroxysulfate precipitates formed in bioleach solutions[J]. Hydrometallurgy, 2008, 94(1-4): 29-33.

    [35] BHATTI T M, BIGHAM J M, VUORINEN A, et al. Weathering of phlogopite in simulated bioleaching solutions[J]. Int J Miner Process, 2011, 98(1/2): 30-34.

    [36] VASILAKOS N P, CLINTON C S. Chemical beneficiation of coal with aqueous hydrogen peroxide/sulphuric acid solutions[J]. Fuel, 1984, 63(11): 1561-1563.

    [39] XU A H, LI X X, XIONG H, et al. Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide[J]. Chemosphere, 2011, 82(8): 1190-1195.

    HUANG Shaokun, LUO Liming, SUN Hongjuan, PENG Tongjiang, CHEN Shize. Influence of Saline Sulfuric Acid Treatment on Vermiculite Process and Its Mechanism[J]. Journal of the Chinese Ceramic Society, 2023, 51(7): 1783
    Download Citation