[1] MADSEN B D, KOBSIRIPHAT W, WANG Y, et al. SOFC anode performance enhancement through precipitation of nanoscale catalysts[J]. ECS Trans, 2007, 7(1): 1339-1348.
[2] SUN Y F, ZHANG Y Q, CHEN J, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Lett, 2016, 16(8): 5303-5309.
[3] NIU Y J, SUNARSO J, LIANG F L, et al. A comparative study of oxygen reduction reaction on Bi- and La-doped SrFeO3-δ perovskite cathodes[J]. J Electrochem Soc, 2011, 158: B132-B138.
[4] WEBER A, SAUER B, HERBSTRITT D, et al. Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes[J]. Solid State Ionics, 2002, 152: 543-550.
[5] YU J G, HUI Y, WANG Y Z, et al. Performance and effective kinetic models of methane steam reforming over an Ni-YSZ anode of planar solid oxide fuel cell[J]. J Shanghai Jiaotong Univ, 2009, 34(9): 3885-3893.
[6] ISHIHARA T, YAN J, ENOKI M, et al. Ni-Fe alloy-supported intermediate temperature SOFCs using LaGaO3 electrolyte film for quick startup[J]. J Fuel Cell Sci Technol, 2008, 5(3): 031205-031207.
[7] MENG Y, ZHAMG Q, CHEN Z J, et al. Novel cobalt and strontium-free perovskite Pr0.5Ba0.5Fe1-xNixO3-δ (x=0 and 0.2) as cathode for intermediate-temperature solid oxide fuel cells[J]. Ionics, 2021, 27(9): 3951-3965
[8] DUVAL S B C, GRAULE T, HOLTAPPELS P, et al. Evaluation of the perovskice (La0.8Sr0.2)0.95Fe0.8Ni0.2O3-δ as SOFC cathode[J]. Fuel Cells, 2009, 9(6): 911-914.
[9] XIE Z X, FENG X X, ZHANG T F, et al. Improved thermal expansion and electrochemical performance of La1-xSrxFe0.7Ni0.3O3-δ cathodes for intermediate-temperature SOFCs[J]. Solid State Sci, 2020, 108: 106356.
[10] HASHIMOTO S I, KAMMER K, LARSEN P H, et al. A study of Pr0.7Sr0.3Fe1-xNixO3-δ as a cathode material for SOFCs with intermediate operating temperature[J]. Solid State Ionics, 2005, 176(11-12): 1013-1020.
[11] GARCES D, WANG H, BARNETT S A, et al. Study of the mechanisms of O2-reduction and degradation operating on La0.5-xPrxBa0.5CoO3-δ cathodes for SOFCs[J]. ECS Trans, 2017, 78(1): 1011-1020.
[12] KIM K J, CHOI S W, KIM M Y, et al. Fabrication characteristics of SOFC single cell with thin LSGM electrolyte via tape-casting and co-sintering[J]. J Ind Eng Chem, 2016, 42: 69-74
[13] ZHANG R, ZHOU Y, ZHU Y, et al. First principle investigations of the Pbnm phase BiFeO3, BiFe0.875Mn0.125O3 and Bi0.875X0.125Fe0.875Mn0.125O3 (XBFM) (X=Ce, Gd, Lu)[J]. Mod Phys Lett B, 2017, 31(32): 1750304.
[14] AHMAD S, REHMAN S U, KIM H S, et al. Hybrid electrochemical deposition route for the facile nanofabrication of a Cr-poisoning-tolerant La(Ni,Fe)O3-δ cathode for solid oxide fuel cells[J]. ACS Appl Mater Interf, 2020, 12(5): 5730-5738.
[15] NIWA E, UEMATSU C, MIYASHITA, et al. Conductivity and sintering property of LaNi1-xFexO3 ceramics prepared by Pechini method[J]. Solid State Ionics, 2011, 201(1): 87-93.
[16] LUO T, LIU X, MENG X, et al. In situ formation of LaNi0.6Fe0.4O3-δ carbon nanotube hybrids as anodes for direct-methane solid oxide fuel cells[J]. J Power Sources, 2015, 299: 472-479.
[17] GAO L, LI Q, SUN L P, et al. A novel family of Nb-doped Bi0.5Sr0.5FeO3-δ perovskite as cathode material for intermediate-temperature solid oxide fuel cells[J]. J Power Sources, 2017, 371(15): 86-95.
[18] FU X M, LIU M H, MENG X W, et al. Cobalt-free perovskite Ln0.5Sr0.5Fe0.8Cu0.2O3-δ (Ln = Pr, Nd, Sm, and Gd) as cathode for intermediate-temperature solid oxide fuel cell[J]. Ionics, 2020, 26: 7-10.
[19] GIULIANO A, NICOLLET C, FOURCADE S, et al. Influence of the electrode/electrolyte interface structure on the performance of Pr0.8Sr0.2Fe0.7Ni0.3O3-δ as solid oxide fuel cell cathode[J]. Electrochim Acta, 2017, 236: 328-336.
[21] GAO L, ZHU M Z, XIA T, et al. Ni-doped BaFeO3-δ perovskite oxide as highly active cathode electrocatalyst for intermediate-temperature solid oxide fuel cells[J]. Electrochim Acta, 2018, 289: 428-436.
[22] ORTIZ-VITORIANO N, BERNUY-LOPEZ C, HAUCH A, et al. Electrochemical characterization of La0.6Ca0.4Fe0.8Ni0.2O3 cathode on Ce0.8Gd0.2O1.9 electrolyte for IT-SOFC[J]. Int J Hydrog Energy, 2014, 39(12).
[23] FARO M L, STASSI A, ANTONUCCI V, et al. Direct utilization of methanol in solid oxide fuel cells: An electrochemical and catalytic study[J]. Int J Hydrog Energy, 2011, 36(16): 9977-9986.
[24] FARO M L, MINUTOLI M, MONFORTE G, et al. Glycerol oxidation in solid oxide fuel cells based on a Ni-perovskite electrocatalyst[J]. Biomass Bioenergy, 2011, 35(3): 1075-1084.
[25] BLINN K S, ABERNATHY H, LI X, et al. Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes[J]. Energ Environ Sci, 2012, 5(7): 7913-7917
[26] BNA B, CLA C, WY A, et al. In-situ growth of nanoparticles-decorated double perovskite electrode materials for symmetrical solid oxide cells[J]. Appl Catal B, 2020, 270: 118842
[27] LI X, LIU M, LAI S Y, et al. In situ probing of the mechanisms of coking resistance on catalyst-modified anodes for solid oxide fuel cells[J]. Chem Mater, 2015, 27(3): 822-828.