• Nano-Micro Letters
  • Vol. 16, Issue 1, 219 (2024)
Se In Kim1, Woong-Ju Kim1, Jin Gu Kang2,*, and Dong-Wan Kim1,**
Author Affiliations
  • 1School of Civil, Environmental and Architectural Engineering, Korea University, 02841 Seoul, South Korea
  • 2Nanophotonics Research Center, Korea Institute of Science and Technology, 02792 Seoul, South Korea
  • show less
    DOI: 10.1007/s40820-024-01428-y Cite this Article
    Se In Kim, Woong-Ju Kim, Jin Gu Kang, Dong-Wan Kim. Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus[J]. Nano-Micro Letters, 2024, 16(1): 219 Copy Citation Text show less
    References

    [1] Y. Gao, Z. Pan, J. Sun, Z. Liu, J. Wang, High-energy batteries: beyond lithium-ion and their long road to commercialisation. Nano-Micro Lett. 14, 94 (2022).

    [2] X. Su, Q. Wu, J. Li, X. Xiao, A. Lott et al., Silicon-based nanomaterials for lithium-ion batteries: a review. Adv. Energy Mater. 4, 1300882 (2014).

    [3] Y. An, Y. Tian, C. Wei, Y. Zhang, S. Xiong et al., Recent advances and perspectives of 2D silicon: synthesis and application for energy storage and conversion. Energy Storage Mater. 32, 115–150 (2020).

    [4] B.J. Ryan, M.P. Hanrahan, Y. Wang, U. Ramesh, C.K.A. Nyamekye et al., Silicene, siloxene, or silicane? revealing the structure and optical properties of silicon nanosheets derived from calcium disilicide. Chem. Mater. 32, 795–804 (2020).

    [5] Y. Kumai, S. Shirai, E. Sudo, J. Seki, H. Okamoto et al., Characteristics and structural change of layered polysilane (Si6H6) anode for lithium ion batteries. J. Power. Sources 196, 1503–1507 (2011).

    [6] L.C. Loaiza, L. Monconduit, V. Seznec, Siloxene: a potential layered silicon intercalation anode for Na, Li and K ion batteries. J. Power. Sources 417, 99–107 (2019).

    [7] R. Fu, K. Zhang, R.P. Zaccaria, H. Huang, Y. Xia et al., Two-dimensional silicon suboxides nanostructures with Si nanodomains confined in amorphous SiO2 derived from siloxene as high performance anode for Li-ion batteries. Nano Energy 39, 546–553 (2017).

    [8] R. Fu, Y. Li, Y. Wu, C. Shen, C. Fan et al., Controlling siloxene oxidization to tailor SiOx anodes for high performance lithium ion batteries. J. Power. Sources 432, 65–72 (2019).

    [9] L.C. Loaiza, N. Dupré, C. Davoisne, L. Madec, L. Monconduit et al., Complex lithiation mechanism of siloxene and germanane: two promising battery electrode materials. J. Electrochem. Soc. 168, 010510 (2021).

    [10] D.J. Arnot, W. Li, D.C. Bock, C.A. Stackhouse, X. Tong et al., Low-oxidized siloxene nanosheets with high capacity, capacity retention, and rate capability in lithium-based batteries. Adv. Mater. Interfaces 9, 2102238 (2022).

    [11] Y. Zhang, L. Tan, Y. Wu, Y. An, Y. Liu et al., Self-healing and ultrastable anode based on room temperature liquid metal reinforced two-dimensional siloxene for high-performance lithium-ion batteries. Appl. Mater. Today 26, 101300 (2022).

    [12] Y. Zhang, Y. Wu, Y. An, C. Wei, L. Tan et al., Ultrastable and high-rate 2D siloxene anode enabled by covalent organic framework engineering for advanced lithium-ion batteries. Small Methods 6, e2200306 (2022).

    [13] H. Shen, Y. An, Q. Man, J. Wang, C. Liu et al., Controlled prelithiation of siloxene nanosheet anodes enables high performance 5 V-class lithium-ion batteries. Chem. Eng. J. 454, 140136 (2023).

    [14] Y. Wang, L. Zhou, J. Huang, X. Wang, X. Xu et al., Highly stable lithium–sulfur batteries promised by siloxene: an effective cathode material to regulate the adsorption and conversion of polysulfides. Adv. Funct. Mater. 30, 1910331 (2020).

    [15] K. Krishnamoorthy, P. Pazhamalai, S.-J. Kim, Two-dimensional siloxene nanosheets: novel high-performance supercapacitor electrode materials. Energy Environ. Sci. 11, 1595–1602 (2018).

    [16] J. Li, L. Gao, F. Pan, C. Gong, L. Sun et al., Engineering strategies for suppressing the shuttle effect in lithium–sulfur batteries. Nano-Micro Lett. 16, 12 (2023).

    [17] Z. Lin, K. Fan, T. Liu, Z. Xu, G. Chen et al., Mitigating lattice distortion of high-voltage LiCoO2 via core-shell structure induced by cationic heterogeneous co-doping for lithium-ion batteries. Nano-Micro Lett. 16, 48 (2023).

    [18] S.-Y. Seo, G. Moon, O.F.N. Okello, M.Y. Park, C. Han et al., Reconfigurable photo-induced doping of two-dimensional van der Waals semiconductors using different photon energies. Nat. Electron. 4, 38–44 (2021).

    [19] M. Ge, J. Rong, X. Fang, C. Zhou, Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318–2323 (2012).

    [20] Y. Domi, H. Usui, M. Shimizu, Y. Kakimoto, H. Sakaguchi, Effect of phosphorus-doping on electrochemical performance of silicon negative electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 8, 7125–7132 (2016).

    [21] S. Huang, L.-Z. Cheong, D. Wang, C. Shen, Nanostructured phosphorus doped silicon/graphite composite as anode for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 9, 23672–23678 (2017).

    [22] G. Lv, B. Zhu, X. Li, C. Chen, J. Li et al., Simultaneous perforation and doping of Si nanoparticles for lithium-ion battery anode. ACS Appl. Mater. Interfaces 9, 44452–44457 (2017).

    [23] J. Im, E.K. Jang, S. Kim, S. Yoon, D.-H. Kim et al., Two-dimensional, P-doped Si/SiOx alternating veneer-like microparticles for high-capacity lithium-ion battery composite. Chem. Eng. J. 402, 126292 (2020).

    [24] M. Salah, C. Hall, P. Murphy, C. Francis, R. Kerr et al., Doped and reactive silicon thin film anodes for lithium ion batteries: a review. J. Power. Sources 506, 230194 (2021).

    [25] I.P. Gordon, W. Xu, S. Randak, T.R. Jow, N.P. Stadie, Stabilizing effects of phosphorus-doped silicon nanoparticle anodes in lithium-ion batteries. Chem. Mater. 35, 549–557 (2023).

    [26] Y.C. Cheng, Z.Y. Zhu, U. Schwingenschlögl, Doped silicene: evidence of a wide stability range. EPL Europhys. Lett. 95, 17005 (2011).

    [27] Z. Ni, H. Zhong, X. Jiang, R. Quhe, G. Luo et al., Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 6, 7609–7618 (2014).

    [28] L.-D. Zhang, F. Yang, Y. Yao, Possible electric-field-induced superconducting states in doped silicene. Sci. Rep. 5, 8203 (2015).

    [29] R. Pablo-Pedro, M.A. Magaña-Fuentes, M. Videa, J. Kong, M. Li et al., Understanding disorder in 2D materials: the case of carbon doping of silicene. Nano Lett. 20, 6336–6343 (2020).

    [30] X. Chen, P. Wang, J. Jin, B. Song, P. He, Effect of transition metal and nitrogen co-doping on quantum capacitance of silicene-based electrode materials. J. Phys. Chem. C 126, 5682–5690 (2022).

    [31] A.Y. Galashev, A.S. Vorob’ev, Ab initio study of the electronic properties of a silicene anode subjected to transmutation doping. Int. J. Mol. Sci. 24, 2864 (2023).

    [32] K.A. González, C.D. Núñez, P.A. Orellana, L. Rosales, Tuning the thermoelectric properties of doped silicene nanoribbon heterostructures. Front. Phys. 10, 1091325 (2023).

    [33] V.N. Hoang, Study of antimony-doped silicene nanoribbons in the electric field. Macromol. Symp. 410, 2100279 (2023).

    [34] R. Zhang, Y. Hou, X. Guo, X. Chen, W. Li et al., Elucidating the effects of B/Al doping on the structure stability and electrochemical properties of silicene using DFT. Phys. Chem. Chem. Phys. 25, 26353–26359 (2023).

    [35] B. Bai, L. Qiu, Y. Yuan, L. Song, J. Xiong et al., Nitrogen doped siloxene and composite with graphene for high performance fiber-based supercapacitors. J. Energy Storage 63, 106984 (2023).

    [36] K. Guo, D. Fan, J. Bao, Y. Li, D. Xu, Atomic-level phosphorus-doped ultrathin Pt nanodendrites as efficient electrocatalysts. Adv. Funct. Mater. 32, 2208057 (2022).

    [37] P. Feng, J. Wu, Z. Fan, B. Ma, Y. Li et al., Boosting photocatalytic conversion of formic acid to CO over P-doped CdS. Chem. Commun. 59, 14253–14256 (2023).

    [38] D. Liu, X. Li, L. Wei, T. Zhang, A. Wang et al., Disproportionation of hypophosphite and phosphite. Dalton Trans. 46, 6366–6378 (2017).

    [39] H. Nakano, M. Ishii, H. Nakamura, Preparation and structure of novel siloxene nanosheets. Chem. Commun. (2005).

    [40] S.I. Kim, W.-J. Kim, J.G. Kang, D.-W. Kim, Intermolecular interaction engineering to enhance lithium-ion storage in two-dimensional oxidized silicon nanosheet anodes. Chem. Eng. J. 467, 143364 (2023).

    [41] X. Hui, S. Sharma, M. Sharifuzzaman, M.A. Zahed, Y.D. Shin et al., Siloxene-functionalized laser-induced graphene via C–O–Si bonding for high-performance heavy metal sensing patch applications. Small 18, e2201247 (2022).

    [42] H. Li, Y. Wang, X. Dai, Y. Gao, G. Lu et al., Tailoring the lateral size of two-dimensional silicon nanomaterials to produce highly stable and efficient deep-blue emissive silicene-like quantum dots. J. Mater. Chem. C 9, 10065–10072 (2021).

    [43] H.D. Fuchs, M. Stutzmann, M.S. Brandt, M. Rosenbauer, J. Weber et al., Porous silicon and siloxene: vibrational and structural properties. Phys. Rev. B Condens. Matter 48, 8172–8189 (1993).

    [44] S. Bae, M. Kim, G. Kang, H.-S. Lee, I.S. Kim et al., Efficient full-color daytime radiative cooling with diffuse-reflection-dominant cholesteric liquid crystals. Chem. Eng. J. 483, 149245 (2024).

    [45] K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo et al., Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy. Nat. Commun. 11, 2351 (2020).

    [46] H. Ubara, T. Imura, A. Hiraki, I. Hirabayashi, K. Morigaki, Structural change from crystalline to amorphous states in siloxene by thermal annealing. J. Non Cryst. Solids 59, 641–644 (1983).

    [47] P. Pazhamalai, K. Krishnamoorthy, S. Sahoo, V.K. Mariappan, S.J. Kim, Understanding the thermal treatment effect of two-dimensional siloxene sheets and the origin of superior electrochemical energy storage performances. ACS Appl. Mater. Interfaces 11, 624–633 (2019).

    [48] J. Yang, E.G. Wang, Reaction of water on silica surfaces. Curr. Opin. Solid State Mater. Sci. 10, 33–39 (2006).

    [49] M. Kim, B.-K. Ju, J.G. Kang, Hierarchical multiscale engineered Fe3O4/Ni electrodes with ultrafast supercapacitive energy storage for alternate current line-filtering. Small Sci. 3, 2370003 (2023).

    [50] Y. Xu, T. Liu, Y. Huang, J. Zhu, R. Zhu, Role of phosphate concentration in control for phosphate removal and recovery by layered double hydroxides. Environ. Sci. Pollut. Res. Int. 27, 16612–16623 (2020).

    [51] W.B. Ying, Y. Mizokawa, Y. Kamiura, K. Kawamoto, W.Y. Yang, The chemical composition changes of silicon and phosphorus in the process of native oxide formation of heavily phosphorus doped silicon. Appl. Surf. Sci. 181, 1–14 (2001).

    [52] M. Lee, S. Kim, D.-H. Ko, Chemical state analysis of heavily phosphorus-doped epitaxial silicon films grown on Si (100) by X-ray photoelectron spectroscopy. Appl. Surf. Sci. 443, 131–137 (2018).

    [53] D.B. Mawhinney, J.A. Glass, J.T. Yates, FTIR study of the oxidation of porous silicon. J. Phys. Chem. B 101, 1202–1206 (1997).

    [54] Z. Liu, J. Ai, M. Sun, F. Han, Z. Li et al., Phosphorous-doped graphite layers with outstanding electrocatalytic activities for the oxygen and hydrogen evolution reactions in water electrolysis. Adv. Funct. Mater. 30, 1910741 (2020).

    [55] J. Albero, A. Vidal, A. Migani, P. Concepción, L. Blancafort et al., Phosphorus-doped graphene as a metal-free material for thermochemical water reforming at unusually mild conditions. ACS Sustainable Chem. Eng. 7, 838–846 (2019).

    [56] J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 313–335 (1993).

    [57] S. Mondal, T.K. Mondal, Y.K. Su, S.K. Saha, Photoluminescence and photo-induced conductivity in 2D siloxene nanosheet for optoelectronic applications. J. Colloid Interface Sci. 562, 453–460 (2020).

    [58] A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A.I. Popov, Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact Mater. At. 441, 12–17 (2019).

    [59] K. Kandpal, J. Singh, N. Gupta, C. Shekhar, Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 29, 14501–14507 (2018).

    [60] C.E. Housecroft, A.G. Sharpe, Inorganic chemistry, 5th edn. (Pearson Education, London, 2018)

    [61] W.-J. Kim, J.G. Kang, D.-W. Kim, Blood clot-inspired viscoelastic fibrin gel: new aqueous binder for silicon anodes in lithium ion batteries. Energy Storage Mater. 45, 730–740 (2022).

    [62] Q. Pan, P. Zuo, S. Lou, T. Mu, C. Du et al., Micro-sized spherical silicon@carbon@graphene prepared by spray drying as anode material for lithium-ion batteries. J. Alloys Compd. 723, 434–440 (2017).

    [63] W.-J. Kim, J.G. Kang, D.-W. Kim, Fibrin biopolymer hydrogel-templated 3D interconnected Si@C framework for lithium ion battery anodes. Appl. Surf. Sci. 551, 149439 (2021).

    [64] S.H. Choi, W.-J. Kim, B.-H. Lee, S.-C. Kim, J.G. Kang et al., Rational design of one-pot solvent-assisted synthesis for multi-functional Sn-substituted superionic Li argyrodite solid electrolytes. J. Mater. Chem. A 11, 14690–14704 (2023).

    [65] J.B. Park, C. Choi, S.W. Jung, B.C. Min, J.H. Park et al., Designing chemically replaced interfacial layer via unveiling the influence of Zn crystal facets for practical Zn-metal anodes. Adv. Mater. 36, e2308684 (2024).

    [66] R. Ruffo, S.S. Hong, C.K. Chan, R.A. Huggins, Y. Cui, Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 113, 11390–11398 (2009).

    [67] Y. Gao, L. Fan, R. Zhou, X. Du, Z. Jiao et al., High-performance silicon-rich microparticle anodes for lithium-ion batteries enabled by internal stress mitigation. Nano-Micro Lett. 15, 222 (2023).

    [68] J. Maier, Defect chemistry: composition, transport, and reactions in the solid state; part II: kinetics. Angew. Chem. Int. Ed. 32, 528–542 (1993).

    [69] C. Liu, H. Fu, Y. Pei, J. Wu, V. Pisharodi et al., Understanding the electrochemical potential and diffusivity of MnO/C nanocomposites at various charge/discharge states. J. Mater. Chem. A 7, 7831–7842 (2019).

    [70] K. Jang, H. Yoon, J.S. Hyoung, D.S.A. Pratama, C.W. Lee et al., Enhancement of hydrogen evolution activity by tailoring the electronic structure in ruthenium-heteroatom-doped cobalt iron phosphide nanoframes. Appl. Catal. B Environ. 341, 123327 (2024).

    [71] I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev et al., A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    [72] G. Yang, S. Zhang, S. Weng, X. Li, X. Wang et al., Anionic effect on enhancing the stability of a solid electrolyte interphase film for lithium deposition on graphite. Nano Lett. 21, 5316–5323 (2021).

    [73] B. Koo, H. Kim, Y. Cho, K.T. Lee, N.S. Choi et al., A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012).

    [74] H. Shin, J. Park, S. Han, A.M. Sastry, W. Lu, Component-/ structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: Experimental and computational studies. J. Power. Sources 277, 169–179 (2015).

    [75] C.C. Nguyen, T. Yoon, D.M. Seo, P. Guduru, B.L. Lucht, Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 8, 12211–12220 (2016).

    [76] O. Park, J.-I. Lee, M.-J. Chun, J.-T. Yeon, S. Yoo et al., High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer. RSC Adv. 3, 2538–2542 (2013).

    [77] H.Q. Pham, G.J. Chung, J. Han, E.H. Hwang, Y.G. Kwon et al., Interface stabilization via lithium bis(fluorosulfonyl)imide additive as a key for promoted performance of graphite‖LiCoO2 pouch cell under-20 °C. J. Chem. Phys. 152, 094709 (2020).

    [78] M. Xu, L. Zhou, L. Xing, W. Li, B.L. Lucht, Experimental and theoretical investigations on 4, 5-dimethyl-[1, 3]dioxol-2-one as solid electrolyte interface forming additive for lithium-ion batteries. Electrochim. Acta 55, 6743–6748 (2010).

    [79] S. Malmgren, K. Ciosek, R. Lindblad, S. Plogmaker, J. Kühn et al., Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 105, 83–91 (2013).

    [80] J.H. Scofield, Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976).

    [81] G. Greczynski, L. Hultman, A step-by-step guide to perform X-ray photoelectron spectroscopy. J. Appl. Phys. 132, 011101 (2022).

    Se In Kim, Woong-Ju Kim, Jin Gu Kang, Dong-Wan Kim. Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus[J]. Nano-Micro Letters, 2024, 16(1): 219
    Download Citation