• Chinese Journal of Lasers
  • Vol. 52, Issue 10, 1001008 (2025)
Naiwen Chang1,2, Tingting Liu1, Shuqin Jia1, Ying Huai1,*, and Yuqi Jin1
Author Affiliations
  • 1Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning , China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.3788/CJL241440 Cite this Article Set citation alerts
    Naiwen Chang, Tingting Liu, Shuqin Jia, Ying Huai, Yuqi Jin. Numerical Study of Chemical Lasers Based on Physics‑Informed Neural Networks[J]. Chinese Journal of Lasers, 2025, 52(10): 1001008 Copy Citation Text show less
    References

    [1] Yuryshev N N. Chemically pumped oxygen: iodine laser[J]. Quantum Electronics, 26, 567-584(1996).

    [2] Endo M, Nagatomo S, Takeda S et al. High-efficiency operation of chemical oxygen-iodine laser using nitrogen as buffer gas[J]. IEEE Journal of Quantum Electronics, 34, 393-398(1998).

    [3] Heaven M C. Recent advances in the development of discharge-pumped oxygen-iodine lasers[J]. Laser & Photonics Reviews, 4, 671-683(2010).

    [4] Gross R W F, Bott J F[M]. Handbook of chemical lasers(1976).

    [5] Xu X J. Retrospect and prospect on 60-year development of high energy laser[J]. High Power Laser and Particle Beams, 32, 011007(2020).

    [6] Endo M, Masuda T, Uchiyama T. Development of hybrid simulation for supersonic chemical oxygen-iodine laser[J]. AIAA Journal, 45, 90-97(2007).

    [7] Noren C, Vorobieff P, Truman C R et al. Mixing in a supersonic COIL laser: influence of trip jets[J]. Experiments in Fluids, 50, 443-455(2011).

    [8] Jia S Q, Huai Y, Jin Y Q et al. Coupling simulation of flow and optical fields in supersonic chemical oxygen-iodine lasers[J]. Laser & Optoelectronics Progress, 46, 59-63(2009).

    [9] Wu K N, Jia S Q, Huai Y et al. Coupled simulation of flow and optical power extraction in supersonic chemical oxygen-iodine lasers[J]. High Power Laser and Particle Beams, 23, 2005-2010(2011).

    [10] Huai Y, Jia S Q, Wu K N et al. High-energy chemical laser multiphysics coupling numerical simulation[J]. CIESC Journal, 70, 4298-4305, 4517(2019).

    [11] Wang Z Q, Zhou D J, Li L C et al. Combustion-driven HF-HBr dual-band laser[J]. Chinese Journal of Lasers, 49, 1716002(2022).

    [12] Jia S Q, Huai Y, Liu T T et al. Fully closed carrier gas circulation chemical oxygen iodine laser[J]. Chinese Journal of Lasers, 49, 1816001(2022).

    [13] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 521, 436-44(2015).

    [14] Karniadakis G E, Kevrekidis I G, Lu L et al. Physics-informed machine learning[J]. Nature Reviews Physics, 3, 422-440(2021).

    [15] Raissi M, Perdikaris P, Karniadakis G E. Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations[EB/OL]. https:∥arxiv.org/abs/1711.10561

    [16] Raissi M, Perdikaris P, Karniadakis G E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 378, 686-707(2019).

    [17] Raissi M, Karniadakis G E. Hidden physics models: machine learning of nonlinear partial differential equations[J]. Journal of Computational Physics, 357, 125-141(2018).

    [18] Dwivedi V, Parashar N, Srinivasan B. Distributed learning machines for solving forward and inverse problems in partial differential equations[J]. Neurocomputing, 420, 299-316(2021).

    [19] Mishra S, Molinaro R. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs[J]. IMA Journal of Numerical Analysis, 42, 981-1022(2022).

    [20] He Q Z, Barajas-Solano D, Tartakovsky G et al. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport[J]. Advances in Water Resources, 141, 103610(2020).

    [21] Raissi M, Yazdani A, Karniadakis G E. Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations[J]. Science, 367, 1026-1030(2020).

    [22] Lu Z B, Qu J H, Liu H et al. Surrogate modeling for physical fields of heat transfer processes based on physics-informed neural network[J]. CIESC Journal, 72, 1496-1503(2021).

    [23] Xiang H Z, Cheng H, Ding Q H et al. Designing progressive lenses using physics-informed neural networks to solve partial differential equations[J]. Acta Optica Sinica, 45, 0122002(2025).

    [24] Wu Q, Zhu X Y, Xu C L. High-resolution light field chromatography particle image velocimetry based on physical equation[J]. Acta Optica Sinica, 45, 0112007(2025).

    [25] Chang N W, Huai Y, Li H. Solving the inverse problem of laser with complex-valued field by physics-informed neural networks[M]. Neural information processing, 1961, 66-75(2023).

    [26] Sang F T, Jin Y Q, Duo L P[M]. Chemical laser and its applications(2006).

    [27] Wu K N, Huai Y, Jia S Q et al. Coupled simulation of chemical lasers based on intracavity partially coherent light model and 3D CFD model[J]. Optics Express, 19, 26295-26307(2011).

    Naiwen Chang, Tingting Liu, Shuqin Jia, Ying Huai, Yuqi Jin. Numerical Study of Chemical Lasers Based on Physics‑Informed Neural Networks[J]. Chinese Journal of Lasers, 2025, 52(10): 1001008
    Download Citation