• Acta Physica Sinica
  • Vol. 68, Issue 7, 070702-1 (2019)
Zhi-Jun Song1、2, Zhao-Zheng Lü1、2, Quan Dong3, Jun-Ya Feng1、2, Zhong-Qing Ji1、2、*, Yong Jin3, and Li Lü1、2
Author Affiliations
  • 1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 2School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, University Paris-Sud, University Paris-Saclay, Palaiseau 91120, France
  • show less
    DOI: 10.7498/aps.68.20190114 Cite this Article
    Zhi-Jun Song, Zhao-Zheng Lü, Quan Dong, Jun-Ya Feng, Zhong-Qing Ji, Yong Jin, Li Lü. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures[J]. Acta Physica Sinica, 2019, 68(7): 070702-1 Copy Citation Text show less
    Circuit diagram (a) and picture (b) of a cryogenic low noise amplifier.低温低噪声放大器的电路图(a)和实物图(b)
    Fig. 1. Circuit diagram (a) and picture (b) of a cryogenic low noise amplifier.低温低噪声放大器的电路图(a)和实物图(b)
    (a) Gain of the cryogenic amplifier with frequency; (b) equivalent input voltage noise of the cryogenic amplifier.(a)低温放大器增益-频率曲线; (b)低温放大器等效输入电压噪声
    Fig. 2. (a) Gain of the cryogenic amplifier with frequency; (b) equivalent input voltage noise of the cryogenic amplifier.(a)低温放大器增益-频率曲线; (b)低温放大器等效输入电压噪声
    Shot noise measurement system of Oxford dry dilution refrigerator Triton200(Center frequency of LC resonance circuit is 765 kHz).牛津干式稀释制冷机Triton200散粒噪声测量系统(LC谐振中心频率为765 kHz)
    Fig. 3. Shot noise measurement system of Oxford dry dilution refrigerator Triton200(Center frequency of LC resonance circuit is 765 kHz).牛津干式稀释制冷机Triton200散粒噪声测量系统(LC谐振中心频率为765 kHz)
    Circuit AC noise model used for measurement system.测量系统交流噪声模型
    Fig. 4. Circuit AC noise model used for measurement system.测量系统交流噪声模型
    (a) Resistance of 10 kΩ TaN resistor as a function of temperature; (b) schematic diagram of thermal noise measurement of a network composed of TaN resistor and nickel chromium metal film.(a) 10 kΩ TaN电阻随温度变化; (b) TaN电阻与镍铬金属膜电阻构成的网络的热噪声测量的示意图
    Fig. 5. (a) Resistance of 10 kΩ TaN resistor as a function of temperature; (b) schematic diagram of thermal noise measurement of a network composed of TaN resistor and nickel chromium metal film.(a) 10 kΩ TaN电阻随温度变化; (b) TaN电阻与镍铬金属膜电阻构成的网络的热噪声测量的示意图
    Variation of PSD with temperature when r = 10, 20 kΩ.r = 10, 20 kΩ时PSD随着温度的变化
    Fig. 6. Variation of PSD with temperature when r = 10, 20 kΩ. r = 10, 20 kΩ时PSD随着温度的变化
    Differential resistance of an Al-AlOx-Al tunneling junction as a function of DC current I at 4 K(Inset: SEM image of a tunneling junction).4 K温度下, Al-AlOx-Al隧道结的dV/dI随着直流偏置I的变化(内嵌图为隧道结SEM图)
    Fig. 7. Differential resistance of an Al-AlOx-Al tunneling junction as a function of DC current I at 4 K(Inset: SEM image of a tunneling junction). 4 K温度下, Al-AlOx-Al隧道结的dV/dI随着直流偏置I的变化(内嵌图为隧道结SEM图)
    (a) Variation of PSD with frequency f and DC current I at 4 K; (b) variation of PSD at 765 kHz with DC current I at different temperatures.(a) 4 K温度下, 输出的PSD随着频率f以及直流电流I的变化; (b)不同温度下, 中心频率765 kHz处输出的PSD随着直流电流I的变化
    Fig. 8. (a) Variation of PSD with frequency f and DC current I at 4 K; (b) variation of PSD at 765 kHz with DC current I at different temperatures. (a) 4 K温度下, 输出的PSD随着频率f以及直流电流I的变化; (b)不同温度下, 中心频率765 kHz处输出的PSD随着直流电流I的变化
    Shot noise Si of Al–AlOx–Al tunneling junction with DC current I at different temperatures and fitting curves.不同温度下, Al–AlOx–Al隧道结的散粒噪声Si随直流电流I的变化及拟合曲线
    Fig. 9. Shot noise Si of Al–AlOx–Al tunneling junction with DC current I at different temperatures and fitting curves. 不同温度下, Al–AlOx–Al隧道结的散粒噪声Si随直流电流I的变化及拟合曲线
    (a) Differential resistance dV/dI of Al–AlOx–Al junction vs. DC current I at 20 mK and V-I curve at 20 mK; (b) fano factor F of Al–AlOx–Al junction vs. DC current I at 20 mK.(a) 20 mK下, Al–AlOx–Al的微分电阻dV/dI随着直流偏置I的变化以及V–I曲线; (b) 20 mK下, Al–AlOx–Al的Fano因子F随着直流偏置I的变化
    Fig. 10. (a) Differential resistance dV/dI of Al–AlOx–Al junction vs. DC current I at 20 mK and V-I curve at 20 mK; (b) fano factor F of Al–AlOx–Al junction vs. DC current I at 20 mK. (a) 20 mK下, Al–AlOx–Al的微分电阻dV/dI随着直流偏置I的变化以及VI曲线; (b) 20 mK下, Al–AlOx–Al的Fano因子F随着直流偏置I的变化
    课题组或公司放大器 电路分布 功耗/mW本底电压噪声/nV·Hz–1/2
    DiCarlo课题组[27]分立1.80.4
    Robinson课题组[30]分立0.50.7
    Arakawa课题组[29]集成41
    Stahl-electronics公司集成130.25
    笔者课题组集成0.7540.25
    Table 1. Comparison of power consumption and background noises of different cryogenic amplifiers made by different groups and companies.
    放大器架构HEMT类型增益/倍功耗/mW带宽1/f噪声的拐角 等效输入电压噪声/nV·Hz–1/2
    注: *表示由法国国家科学院纳米科学与技术中心金勇课题组提供的HEMT
    共源极 + 源极跟随ATF3314315.83.56810 Hz—20 MHz300 kHz0.45
    共源极定制*100.75410 Hz—1 MHz3 kHz0.25
    共源共栅 + 源极跟随定制*253500 Hz—20 MHz30 kHz0.17
    Table 2.

    Comparison of our home-made cryogenic amplifiers.

    不同架构的低温放大器参数对比

    T/K 46810121416
    F0.948270.950850.951150.981940.971130.990880.96408
    Table 3.

    Fano factors are obtained by fitting the test data at different temperature.

    不同温度下, 拟合得到的Fano因子

    Zhi-Jun Song, Zhao-Zheng Lü, Quan Dong, Jun-Ya Feng, Zhong-Qing Ji, Yong Jin, Li Lü. Shot noise measurement for tunnel junctions using a homemade cryogenic amplifier at dilution refrigerator temperatures[J]. Acta Physica Sinica, 2019, 68(7): 070702-1
    Download Citation