• Acta Photonica Sinica
  • Vol. 51, Issue 8, 0851516 (2022)
Yang XIAO1、1、1、1, Yutao FENG1、1, Zhenqing WEN1、1、1、1, and Di FU1、1、1、1
Author Affiliations
  • 11Key Laboratory of Spectral Imaging Technology,Xi'an Institute of Optics Precision Mechanic of Chinese Academy of Sciences,Xi'an 710119,China
  • 12University of Chinese Academy of Sciences,Beijing 100049,China
  • show less
    DOI: 10.3788/gzxb20225108.0851516 Cite this Article
    Yang XIAO, Yutao FENG, Zhenqing WEN, Di FU. Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516 Copy Citation Text show less
    Space-based and ground-based passive optical remote sensing atmospheric wind field observation mode
    Fig. 1. Space-based and ground-based passive optical remote sensing atmospheric wind field observation mode
    Schematic of Doppler asymmetric spatial heterodyne interferometer[60]
    Fig. 2. Schematic of Doppler asymmetric spatial heterodyne interferometer60
    Comparison of spectral inversion capabilities between SHS and DASH
    Fig. 3. Comparison of spectral inversion capabilities between SHS and DASH
    Comparison of Doppler shift sensitivity between SHS and DASH
    Fig. 4. Comparison of Doppler shift sensitivity between SHS and DASH
    Four typical structural forms of DASH(Zemax diagram)
    Fig. 5. Four typical structural forms of DASH(Zemax diagram)
    The redline DASH demonstration instrument[10]
    Fig. 6. The redline DASH demonstration instrument10
    The atmospheric redline interferometer for Doppler winds[49]
    Fig. 7. The atmospheric redline interferometer for Doppler winds49
    Stratospheric wind interferometer for transport studies—Doppler asymmetric spatial heterodyne[50]
    Fig. 8. Stratospheric wind interferometer for transport studies—Doppler asymmetric spatial heterodyne50
    Prototype of broad-band Doppler asymmetric spatial heterodyne interferometer and interferogram of standard source
    Fig. 9. Prototype of broad-band Doppler asymmetric spatial heterodyne interferometer and interferogram of standard source
    Interferogram of the airglow 630 nm and 557.7 nm
    Fig. 10. Interferogram of the airglow 630 nm and 557.7 nm
    DASH structure and result of the phase stability experiment
    Fig. 11. DASH structure and result of the phase stability experiment
    DASH developed by Jülich Research Center[39]
    Fig. 12. DASH developed by Jülich Research Center39
    Instrument diagram of MIGHTI[29]
    Fig. 13. Instrument diagram of MIGHTI29
    Laboratory test diagram of mini-MIGHTI[58]
    Fig. 14. Laboratory test diagram of mini-MIGHTI58
    Prototype of space-borne broad-band Doppler asymmetric spatial heterodyne interferometer
    Fig. 15. Prototype of space-borne broad-band Doppler asymmetric spatial heterodyne interferometer
    Prototype of long-wave infrared spatial heterodyne spectroscopy
    Fig. 16. Prototype of long-wave infrared spatial heterodyne spectroscopy
    Ground-based Doppler asymmetric spatial heterodyne interferometer
    Fig. 17. Ground-based Doppler asymmetric spatial heterodyne interferometer
    Yang XIAO, Yutao FENG, Zhenqing WEN, Di FU. Doppler Asymmetric Spatial Heterodyne Interferometry for Wind Measurement in Middle and Upper Atmosphere(Invited)[J]. Acta Photonica Sinica, 2022, 51(8): 0851516
    Download Citation