• Photonics Research
  • Vol. 9, Issue 5, B201 (2021)
Yahui Zhang1、2, Joshua Robertson1, Shuiying Xiang2、*, Matěj Hejda1, Julián Bueno1, and Antonio Hurtado1、3
Author Affiliations
  • 1Institute of Photonics, SUPA Department of Physics, University of Strathclyde, Glasgow G1 1RD, UK
  • 2State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an 710071, China
  • 3e-mail: antonio.hurtado@strath.ac.uk
  • show less
    DOI: 10.1364/PRJ.412141 Cite this Article Set citation alerts
    Yahui Zhang, Joshua Robertson, Shuiying Xiang, Matěj Hejda, Julián Bueno, Antonio Hurtado. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes[J]. Photonics Research, 2021, 9(5): B201 Copy Citation Text show less
    Experimental setup of the binary convolution system based on a single VCSEL. TL, tunable laser; OI, optical isolator; VOA, variable optical attenuator; PC1, PC2, and PC3, polarization controllers; AWG, arbitrary waveform generator; Mod1, Mod2, Mach–Zehnder modulators; OC1, OC2, optical couplers; CIRC, circulator; Bias & T Controller, bias and temperature controller; PD, photodetector; PM, power meter; SCOPE, oscilloscope; OSA, optical spectrum analyzer.
    Fig. 1. Experimental setup of the binary convolution system based on a single VCSEL. TL, tunable laser; OI, optical isolator; VOA, variable optical attenuator; PC1, PC2, and PC3, polarization controllers; AWG, arbitrary waveform generator; Mod1, Mod2, Mach–Zehnder modulators; OC1, OC2, optical couplers; CIRC, circulator; Bias & T Controller, bias and temperature controller; PD, photodetector; PM, power meter; SCOPE, oscilloscope; OSA, optical spectrum analyzer.
    (a) Optical spectrum of free-running VCSEL used in the experiment. (b) Optical spectrum of the VCSEL subject to constant optical injection. Two polarization modes of VCSELs are referred to as λy (parallel) and λx (orthogonal).
    Fig. 2. (a) Optical spectrum of free-running VCSEL used in the experiment. (b) Optical spectrum of the VCSEL subject to constant optical injection. Two polarization modes of VCSELs are referred to as λy (parallel) and λx (orthogonal).
    Example of a single step during a 2D binary convolution operation. During this step, a Hadamard (element-wise) product is calculated for a submatrix of the image and the kernel, and all of the values in the multiplication result are summed up to obtain a single value.
    Fig. 3. Example of a single step during a 2D binary convolution operation. During this step, a Hadamard (element-wise) product is calculated for a submatrix of the image and the kernel, and all of the values in the multiplication result are summed up to obtain a single value.
    Experimental convolution operation. (a) Inputs of Channel 1 (image in Fig. 3). (b) Inputs of Channel 2 (kernel in Fig. 3). (c) Inputs of VCSEL. (d) Outputs of VCSEL (the results of convolution).
    Fig. 4. Experimental convolution operation. (a) Inputs of Channel 1 (image in Fig. 3). (b) Inputs of Channel 2 (kernel in Fig. 3). (c) Inputs of VCSEL. (d) Outputs of VCSEL (the results of convolution).
    Temporal map of 100 superimposed consecutive convolutional results measured experimentally at the output of spiking VCSEL neuron.
    Fig. 5. Temporal map of 100 superimposed consecutive convolutional results measured experimentally at the output of spiking VCSEL neuron.
    (a) Gray color: range of the local binary pattern descriptor of pixels. (b) A 24×24 pixels “Square” source image. The red highlight indicates a given pixel in the image. (c) The four convolutions (BX+, BX−, BY+, and BY−) of the 5×5 binary pattern. Bits that fall outside the highlighted areas for a given string are set to zero.
    Fig. 6. (a) Gray color: range of the local binary pattern descriptor of pixels. (b) A 24×24 pixels “Square” source image. The red highlight indicates a given pixel in the image. (c) The four convolutions (BX+, BX, BY+, and BY) of the 5×5 binary pattern. Bits that fall outside the highlighted areas for a given string are set to zero.
    Four convolutional results with four highlighted area kernels for one pixel, which has red box in Fig. 6.
    Fig. 7. Four convolutional results with four highlighted area kernels for one pixel, which has red box in Fig. 6.
    Gradient maps of the “Square” source image. Visualizations of (a) G, (b) GX, and (c) GY maps of the “Square” source image based on the optical binary convolution performed by the VCSEL neuron.
    Fig. 8. Gradient maps of the “Square” source image. Visualizations of (a) G, (b) GX, and (c) GY maps of the “Square” source image based on the optical binary convolution performed by the VCSEL neuron.
    “Horse head” image and the gradient maps of the “Horse head” image. (a) Source “Horse” image. The blue box indicates the “Horse Head” image used for analysis in (b). Visualizations of the (c) G, (d) GX, and (e) GY maps of the “Horse head” image obtained from the optical binary convolution performed with the VCSEL neuron.
    Fig. 9. “Horse head” image and the gradient maps of the “Horse head” image. (a) Source “Horse” image. The blue box indicates the “Horse Head” image used for analysis in (b). Visualizations of the (c) G, (d) GX, and (e) GY maps of the “Horse head” image obtained from the optical binary convolution performed with the VCSEL neuron.
    (a1)–(a3) Inputs of Channel 1 (image in Fig. 3). (b1)–(b3) Inputs of Channel 2 (kernel in Fig. 3). (c1)–(c3) VCSEL neuron’s output. (a1)–(c1) Convolutional operation in the VCSEL neuron without noise. (a2)–(c2) Convolutional operation in the VCSEL neuron with added input noise of SNR=20 dB. (a3)–(c3) Convolution operation with a 5×5 pixels kernel.
    Fig. 10. (a1)–(a3) Inputs of Channel 1 (image in Fig. 3). (b1)–(b3) Inputs of Channel 2 (kernel in Fig. 3). (c1)–(c3) VCSEL neuron’s output. (a1)–(c1) Convolutional operation in the VCSEL neuron without noise. (a2)–(c2) Convolutional operation in the VCSEL neuron with added input noise of SNR=20  dB. (a3)–(c3) Convolution operation with a 5×5 pixels kernel.
    “Horse” image and gradient maps of the “Horse” image. (a) “Horse” image. Visualizations of (b) G, (c) GX, and (d) GY maps of “Horse” image based on the numerical optical binary convolution in VCSEL.
    Fig. 11. “Horse” image and gradient maps of the “Horse” image. (a) “Horse” image. Visualizations of (b) G, (c) GX, and (d) GY maps of “Horse” image based on the numerical optical binary convolution in VCSEL.
    Yahui Zhang, Joshua Robertson, Shuiying Xiang, Matěj Hejda, Julián Bueno, Antonio Hurtado. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes[J]. Photonics Research, 2021, 9(5): B201
    Download Citation