• Journal of Applied Optics
  • Vol. 45, Issue 2, 346 (2024)
Xichen WANG1, Fulun PENG2, Yexun LI3, and Junju ZHANG1,*
Author Affiliations
  • 1School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
  • 2Xi'an Institute of Applied Optics, Xi'an 710065, China
  • 3Jiangsu North Huguang Photoelectric Co.,Ltd., Wuxi 214100, China
  • show less
    DOI: 10.5768/JAO202445.0202001 Cite this Article
    Xichen WANG, Fulun PENG, Yexun LI, Junju ZHANG. Infrared target detection algorithm based on improved Faster R-CNN[J]. Journal of Applied Optics, 2024, 45(2): 346 Copy Citation Text show less
    References

    [1] Hongyan CAO, Xiaolin SHEN, Changming LIU et al. Improved YOLOv3 infrared target detection algorithm. Electronic Measurement and Instrument, 34, 188-194(20).

    [2] Jiaojiao GU, Bingzhen LI, Ke LIU et al. Infrared ship target detection algorithm based on improved Faster R-CNN. Infrared Technology, 43, 170-178(2021).

    [3] Wei CAI, Peiwei XU, Zhiyong YANG et al. Dim target detection in infrared image with complex background. Applied Optics, 42, 643-650(2021).

    [4] Haiyun CHEN, Honghao YU, Haichuan WANG et al. Infrared target detection algorithm based on improved YOLOX. Electronic Measurement Technology, 45, 72-81(2022).

    [5] R GIRSHICK. Faster R-CNN, 1440-1448(2015).

    [6] K HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2961-2969(2017).

    [7] Z CAI, N VASCONCELOS. Cascade R-CNN: high quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1483-1498(2019).

    [8] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: unified, real-time object detection, 779-788(2016).

    [9] J REDMON, A FARHADI. Yolo9000: better, faster, stronger, 7263-7271(2017).

    [10] Z GE, S LIU, F WANG et al. YOLOX: exceeding YOLO series in 2021. https://ui.adsabs.harvard.edu/abs/2021arXiv210708430G/abstract

    [11] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).

    [12] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(2018).

    [13] Z QIN, P ZHANG, F WU et al. Fcanet: frequency channel attention networks, 783-792(2021).

    [14] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).

    [15] K WANG, S LIU, L QI, H QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).

    [16] Bingwei HUI, Zhiyong SONG, Hongqi FAN et al. A dataset for dim-small target detection and tracking of aircraft in infrared image sequences. Science Data Bank(2019). http://10.11922/csdata.2019.0074.zh

    [17] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft coco: common objects in context, 740-755(2014).

    Xichen WANG, Fulun PENG, Yexun LI, Junju ZHANG. Infrared target detection algorithm based on improved Faster R-CNN[J]. Journal of Applied Optics, 2024, 45(2): 346
    Download Citation