[1] Hongyan CAO, Xiaolin SHEN, Changming LIU et al. Improved YOLOv3 infrared target detection algorithm. Electronic Measurement and Instrument, 34, 188-194(20).
[2] Jiaojiao GU, Bingzhen LI, Ke LIU et al. Infrared ship target detection algorithm based on improved Faster R-CNN. Infrared Technology, 43, 170-178(2021).
[4] Haiyun CHEN, Honghao YU, Haichuan WANG et al. Infrared target detection algorithm based on improved YOLOX. Electronic Measurement Technology, 45, 72-81(2022).
[5] R GIRSHICK. Faster R-CNN, 1440-1448(2015).
[6] K HE, G GKIOXARI, P DOLLÁR et al. Mask R-CNN, 2961-2969(2017).
[7] Z CAI, N VASCONCELOS. Cascade R-CNN: high quality object detection and instance segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43, 1483-1498(2019).
[8] J REDMON, S DIVVALA, R GIRSHICK et al. You only look once: unified, real-time object detection, 779-788(2016).
[9] J REDMON, A FARHADI. Yolo9000: better, faster, stronger, 7263-7271(2017).
[11] T Y LIN, P GOYAL, R GIRSHICK et al. Focal loss for dense object detection, 2980-2988(2017).
[12] J HU, L SHEN, G SUN. Squeeze-and-excitation networks, 7132-7141(2018).
[13] Z QIN, P ZHANG, F WU et al. Fcanet: frequency channel attention networks, 783-792(2021).
[14] T Y LIN, P DOLLÁR, R GIRSHICK et al. Feature pyramid networks for object detection, 2117-2125(2017).
[15] K WANG, S LIU, L QI, H QIN et al. Path aggregation network for instance segmentation, 8759-8768(2018).
[17] T Y LIN, M MAIRE, S BELONGIE et al. Microsoft coco: common objects in context, 740-755(2014).