• Advanced Photonics
  • Vol. 5, Issue 3, 036006 (2023)
Zhongzheng Lin1、†, Jianqi Hu2、*, Yujie Chen1, Camille-Sophie Brès2, and Siyuan Yu1、*
Author Affiliations
  • 1Sun Yat-sen University, School of Electronics and Information Technology, State Key Laboratory of Optoelectronic Materials and Technologies, Guangzhou, China
  • 2École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory, STI-IEM, Lausanne, Switzerland
  • show less
    DOI: 10.1117/1.AP.5.3.036006 Cite this Article Set citation alerts
    Zhongzheng Lin, Jianqi Hu, Yujie Chen, Camille-Sophie Brès, Siyuan Yu. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval[J]. Advanced Photonics, 2023, 5(3): 036006 Copy Citation Text show less
    References

    [1] D. Naidoo et al. Controlled generation of higher-order Poincaré sphere beams from a laser. Nat. Photonics, 10, 327-332(2016).

    [2] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photonics, 8, 200-227(2016).

    [3] A. E. Willner et al. Optical communications using orbital angular momentum beams. Adv. Opt. Photonics, 7, 66-106(2015).

    [4] H. Rubinsztein-Dunlop et al. Roadmap on structured light. J. Opt., 19, 013001(2016).

    [5] M. J. Padgett. Orbital angular momentum 25 years on. Opt. Express, 25, 11265-11274(2017).

    [6] M. Erhard et al. Twisted photons: new quantum perspectives in high dimensions. Light Sci. Appl., 7, 17146(2018).

    [7] Y. Shen et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light. Sci. Appl., 8, 90(2019).

    [8] C. Schulze et al. Measurement of the orbital angular momentum density of light by modal decomposition. New J. Phys., 15, 073025(2013).

    [9] J. Hickmann et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett., 105, 053904(2010).

    [10] K. Dai et al. Measuring OAM states of light beams with gradually-changing-period gratings. Opt. Lett., 40, 562-565(2015).

    [11] S. Zheng, J. Wang. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings. Sci. Rep., 7, 40781(2017).

    [12] J. Leach et al. Measuring the orbital angular momentum of a single photon. Phys. Rev. Lett., 88, 257901(2002).

    [13] G. C. Berkhout et al. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [14] M. P. Lavery et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Opt. Express, 20, 2110-2115(2012).

    [15] M. Mirhosseini et al. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun., 4, 2741(2013).

    [16] Y. Wen et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Phys. Rev. Lett., 120, 193904(2018).

    [17] G. Labroille et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt. Express, 22, 15599-15607(2014).

    [18] N. K. Fontaine et al. Laguerre-Gaussian mode sorter. Nat. Commun., 10, 1865(2019).

    [19] Y. Zhang et al. Simultaneous sorting of wavelengths and spatial modes using multi-plane light conversion(2020).

    [20] H. Huang et al. Phase-shift interference-based wavefront characterization for orbital angular momentum modes. Opt. Lett., 38, 2348-2350(2013).

    [21] H.-L. Zhou et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect. Light Sci. Appl., 6, e16251(2017).

    [22] A. D’Errico et al. Measuring the complex orbital angular momentum spectrum and spatial mode decomposition of structured light beams. Optica, 4, 1350-1357(2017).

    [23] S. Fu et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 19(2020).

    [24] G. Kulkarni et al. Single-shot measurement of the orbital-angular-momentum spectrum of light. Nat. Commun., 8, 1054(2017).

    [25] E. Ip et al. Coherent detection in optical fiber systems. Opt. Express, 16, 753-791(2008).

    [26] W.-R. Peng et al. Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique. Opt. Express, 17, 9099-9111(2009).

    [27] S. Randel et al. 100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme, 1-3(2015).

    [28] A. Mecozzi, C. Antonelli, M. Shtaif. Kramers–Kronig coherent receiver. Optica, 3, 1220-1227(2016).

    [29] Z. Li et al. SSBI mitigation and the Kramers–Kronig scheme in single-sideband direct-detection transmission with receiver-based electronic dispersion compensation. J. Lightwave Technol., 35, 1887-1893(2017).

    [30] T. Bo, H. Kim. Kramers–Kronig receiver operable without digital upsampling. Opt. Express, 26, 13810-13818(2018).

    [31] A. Mecozzi, C. Antonelli, M. Shtaif. Kramers–Kronig receivers. Adv. Opt. Photonics, 11, 480-517(2019).

    [32] Y. Baek et al. Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 6, 45-51(2019).

    [33] Y. Baek, Y. Park. Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nat. Photonics, 15, 354-360(2021).

    [34] G. Xie et al. Spatial light structuring using a combination of multiple orthogonal orbital angular momentum beams with complex coefficients. Opt. Lett., 42, 991-994(2017).

    [35] M. Malik et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat. Commun., 5, 3115(2014).

    [36] J. Hu, C.-S. Brès, C.-B. Huang. Talbot effect on orbital angular momentum beams: azimuthal intensity repetition-rate multiplication. Opt. Lett., 43, 4033-4036(2018).

    [37] Z. Lin et al. Spectral self-imaging of optical orbital angular momentum modes. APL Photonics, 6, 111302(2021).

    [38] J. B. Götte et al. Light beams with fractional orbital angular momentum and their vortex structure. Opt. Express, 16, 993-1006(2008).

    [39] P. Vaity, L. Rusch. Perfect vortex beam: Fourier transformation of a Bessel beam. Opt. Lett., 40, 597-600(2015).

    [40] A. Mecozzi. A necessary and sufficient condition for minimum phase and implications for phase retrieval(2016).

    [41] V. Cizek. Discrete Hilbert transform. IEEE Trans. Audio Electroacoust., 18, 340-343(1970).

    [42] V. Arrizón et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J. Opt. Soc. Am. A, 24, 3500-3507(2007).

    [43] G. Xie et al. Using a complex optical orbital-angular-momentum spectrum to measure object parameters. Opt. Lett., 42, 4482-4485(2017).

    [44] H. G. De Chatellus et al. Phases of Talbot patterns in angular self-imaging. J. Opt. Soc. Am. A, 32, 1132-1139(2015).

    [45] J. Clement, H. G. de Chatellus, C. R. Fernández-Pousa. Far-field Talbot waveforms generated by acousto-optic frequency shifting loops. Opt. Express, 28, 12977-12997(2020).

    [46] B. P. da Silva et al. Pattern revivals from fractional Gouy phases in structured light. Phys. Rev. Lett., 124, 033902(2020).

    [47] R.-Y. Zhong et al. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light. Phys. Rev. A, 103, 053520(2021).

    [48] H.-J. Wu et al. Conformal frequency conversion for arbitrary vectorial structured light. Optica, 9, 187-196(2022).

    [49] H. Zhang et al. Review on fractional vortex beam. Nanophotonics, 11, 241-273(2022).

    [50] N. Bozinovic et al. Control of orbital angular momentum of light with optical fibers. Opt. Lett., 37, 2451-2453(2012).

    [51] H. Guo, X. Qiu, L. Chen. Simple-diffraction-based deep learning to reconstruct a high-dimensional orbital-angular-momentum spectrum via single-shot measurement. Phys. Rev. Appl., 17, 054019(2022).

    [52] H. Wang et al. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement. PhotoniX, 4, 9(2023).

    [53] J. Courtial et al. Measurement of the rotational frequency shift imparted to a rotating light beam possessing orbital angular momentum. Phys. Rev. Lett., 80, 3217-3219(1998).

    Zhongzheng Lin, Jianqi Hu, Yujie Chen, Camille-Sophie Brès, Siyuan Yu. Single-shot Kramers–Kronig complex orbital angular momentum spectrum retrieval[J]. Advanced Photonics, 2023, 5(3): 036006
    Download Citation