[1] Chang Keke, Chen Leilei, Zhou Ruonan. Progresses of surface engineering in extreme environments and its common scientific problems[J]. China Mechanical Engineering, 33, 1388-1417(2022).
[2] Chang Keke, Wang Liping, Xue Qunji. Progresses of damage and protection for surfaces and interfaces in machinery under extreme operating conditions[J]. China Mechanical Engineering, 31, 206-220(2020).
[3] Zhao Chuandong, Li Jinyan, Zhang Huan. Research on application of high temperature materials in aero-engine[J]. Internal Combustion Engine & Parts, 55-56(2021).
[4] Lin Qingyun, Liu Junpeng, An Xianghai et al. Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy[J]. Materials Research Letters, 6, 236-243(2018).
[5] Bae J W, Kim J G, Park J M et al. In situ neutron diffraction study of phase stress evolution in a ferrous medium-entropy alloy under low-temperature tensile loading[J]. Scripta Materialia, 165, 60-63(2019).
[6] Wang Yiqiang, Liu Bin, Yan Kun et al. Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction[J]. Acta Materialia, 154, 79-89(2018).
[7] Kim J G, Enikeev N A, Seol J B et al. Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel[J]. Scientific Reports, 8, 11200(2018).
[8] De Cooman B C, Estrin Y, Kim S K. Twinning-induced plasticity (TWIP) steels[J]. Acta Materialia, 142, 283-362(2018).
[9] Hany S, Milochova M, Littrell K et al. Advanced characterization of cryogenic 9Ni steel using synchrotron radiation, neutron scattering and 57Fe Mössbauer spectroscopy[J]. Materials & Design, 146, 219-227(2018).
[10] Jia Shuangzhu, Li Chang'an, Xie Tian. Research progress on cryogenic superconducting[J]. Guangzhou Chemical Industry, 46, 15-18(2018).
[11] Nishida M, Jing Tian, Muslih M R et al. In situ stress measurement of fiber reinforced composite in low temperature state by neutron diffraction[J]. Modern Physics Letters B, 29, 1540037(2015).
[12] Lebaudy A L, Pesci R, Fendler M. X-ray diffraction residual stress measurement at room temperature and 77 K in a microelectronic multi-layered single-crystal structure used for infrared detection[J]. Journal of Electronic Materials, 47, 6641-6648(2018).
[13] Duperrex L, Pesci R, Le Boterf P et al. Simulation and measurement of residual stress and warpage in a HgCdTe-based infrared detector at 100K[J]. Materials Science and Engineering: A, 813, 141148(2021).
[14] Yang Zukun. Study on neutron diffraction stress analysis of beryllium metal[D]. Beijing: China Academy of Engineering Physics, 2018
[15] Hutchings M T, Krawitz A D. Measurement of residual applied stress using neutron diffraction[M]. Ddrecht: Springer, 1992.
[16] Hutchings M T, Withers P J, Holden T M, et al. Introduction to the acterization of residual stress by neutron diffraction[M]. Boca Raton: CRC Press, 2005.
[17] Lugovy M, Aman A, Chen Yan et al. In-situ neutron diffraction of LaCoO3 perovskite under uniaxial compression. II. Elastic properties[J]. Journal of Applied Physics, 116, 013504(2014).
[18] Li Nan, Wang Xi, Liu Changkui. Research development of residual stress measured by neutron diffraction[J]. Failure Analysis and Prevention, 16, 148-154(2021).
[19] Huan Yonghui, Xu Pingguang, Yin Jiang. Application of angle dispersion neutron diffraction stress testing technology[J]. Physical and Chemical Testing (Physics Volume), 48, 235-240(2012).
[20] Gu F, Nie Q. Introduction to characterization of residual stress by neutron diffraction[J]. Materials Today, 8, 57(2005).
[21] Yan Yadong, He Junhua. Design of optical system for fusion reaction-rate measurement[J]. Optics and Precision Engineering, 20, 2389-2394(2012).
[22] Wen Feng, Li Mingyang, Zhang Xiaogang. Experimental research of the neutron-shielding performance of several shielding materials[J]. Experimental Technology and Management, 41, 62-67(2024).
[23] An Ke, Skorpenske H D, Stoica A D et al. First in situ lattice strains measurements under load at VULCAN[J]. Metallurgical and Materials Transactions A, 42, 95-99(2011).
[24] Preimesberger J I, Kang S Y, Chen Yan et al. Investigating mechano-electrochemical coupling phenomenon in lithium-ion pouch cells using in-situ neutron diffraction[J]. ECS Transactions, 104, 75-85(2021).
[25] Gao Jianbo, Gong Zhifeng, Zhan Xia. Application of neutron diffraction in-situ characterization technology[J]. China Science and Technology Information, 95-96(2019).
[26] Reid A, Marshall M, Kabra S et al. Application of neutron imaging to detect and quantify fatigue cracking[J]. International Journal of Mechanical Sciences, 159, 182-194(2019).
[27] Li Hongjia, Yang Zhaolong, Shen Huahai et al. On the effect of detwinning during compressive deformation of martensitic NiTi: in situ neutron diffraction and micromechanical modeling[J]. Acta Materialia, 247, 118737(2023).
[28] Sarawate N N, Dapino M J. Dynamic sensing behavior of ferromagnetic shape memory Ni–Mn–Ga[J]. Smart Materials and Structures, 18, 104014(2009).
[29] Bourke M A M, Dunand D C, Ustundag E. SMARTS—a spectrometer for strain measurement in engineering materials[J]. Applied Physics A, 74, s1707-s1709(2002).
[30] Woodruff T R, Krishnan V B, Clausen B et al. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer[J]. Review of Scientific Instruments, 81, 063903(2010).
[31] Harjo S, Aizawa K, Kowasaki T, et al. Cryogenic loading devices f materials science & engineering studies at JPARC[C]JAEAConference 2015002. 2016: 441447.
[32] Naeem M, He Haiyan, Zhang Fan et al. Cooperative deformation in high-entropy alloys at ultralow temperatures[J]. Science Advances, 6, eaax4002(2020).
[33] Yang Jinbo, Li Jian, Liu Wei et al. Development of a load frame for neutron diffraction and fluorescent thermometry at cryogenic temperature[J]. Review of Scientific Instruments, 93, 073904(2022).
[34] Zheng Haibiao, Chen Jie, Yu Chaoju, et al. Lowtemperature coupling stretching device applied to neutron experiment testing method of lowtemperature coupling stretching device: CN117030438A[P]. 20231110
[35] Xie Zhenhua, Ke Yubin, Yang Hua, et al. Insitu extensometer combined with smallangle neutron scattering coupled with high low temperature environments: CN115791428A[P]. 20230314
[36] Huang Shenyan, Gao Yanfei, An Ke et al. Deformation mechanisms in a precipitation-strengthened ferritic superalloy revealed by in situ neutron diffraction studies at elevated temperatures[J]. Acta Materialia, 83, 137-148(2015).
[37] Tong Xin. Polarized neutron techniques[J]. Physics, 49, 765-773(2020).
[38] Ke Y B, Lan S, Wu Y et al. Unraveling magneto-structural coupling of Ni2MnGa alloy under the application of stress and magnetic field using in situ polarized neutron diffraction[J]. Applied Physics Letters, 117, 081905(2020).
[39] Ke Yubin, Zheng Haibiao, Wang Xunli, et al. Ptable insitu multifield coupling loading device f neutron scattering: CN108459035A[P]. 20180828