• Optics and Precision Engineering
  • Vol. 32, Issue 5, 740 (2024)
Yaohua DENG and Zhihai HUANG*
Author Affiliations
  • College of Mechanical and Electrical Engineering, Guangdong University of Technology, Guangzhou510006, China
  • show less
    DOI: 10.37188/OPE.20243205.0740 Cite this Article
    Yaohua DENG, Zhihai HUANG. Multispectral image fusion method for surface defect detection of IC devices[J]. Optics and Precision Engineering, 2024, 32(5): 740 Copy Citation Text show less
    References

    [1] S WANG, H Y WANG, F YANG et al. Attention-based deep learning for chip-surface-defect detection. The International Journal of Advanced Manufacturing Technology, 121, 1957-1971(2022).

    [2] Y LI, P K M SRINATH, D GOYAL. A review of failure analysis methods for advanced 3D microelectronic packages. Journal of Electronic Materials, 45, 116-124(2016).

    [3] P ARYAN, S SAMPATH, H SOHN. An overview of non-destructive testing methods for integrated circuit packaging inspection. Sensors, 18, 1981(2018).

    [4] H Y ZHANG, H SUN, P SHI. Chip appearance inspection method for high-precision SMT equipment. Machines, 9, 34(2021).

    [5] Y CHAO, M DAI, K CHEN et al. A novel gravitational search algorithm for multilevel image segmentation and its application on semiconductor packages vision inspection. Optik, 127, 5770-5782(2016).

    [6] 张稼, 陆兴华, 祝振宇. 多通道数字集成芯片缺陷的线激光锁相热成像检测[J]. 激光杂志, 2022, 43(8): 76-80.ZHANGJ, LUX H, ZHUZH Y. Line laser lock-in thermal imaging detection of defects in multi-channel digital integrated chips[J]. Laser Journal, 2022, 43(8): 76-80.(in Chinese)

    [7] S CONG, Z D SHANG, Q H HUANG. Detection for printed circuit boards (PCBs) delamination defects using optical/thermal fusion imaging technique. Infrared Physics and Technology, 127, 104399(2022).

    [8] M K LI, N F YAO, S LIU et al. Multisensor image fusion for automated detection of defects in printed circuit boards. IEEE Sensors Journal, 21, 23390-23399(2021).

    [9] 江泽涛, 刘小艳, 王琦. 基于显著性和ORB的红外和可见光图像配准算法[J]. 激光与红外, 2019, 49(2): 251-256. doi: 10.3969/j.issn.1001-5078.2019.02.022JIANGZ T, LIUX Y, WANGQ. Visible and infrared image registration algorithm based on saliency and ORB[J]. Laser & Infrared, 2019, 49(2): 251-256.(in Chinese). doi: 10.3969/j.issn.1001-5078.2019.02.022

    [10] 徐海洋, 赵伟, 刘建业. 基于边缘结构特征的红外与可见光图像配准算法[J]. 红外技术, 2023, 45(8): 858-862.XUH Y, ZHAOW, LIUJ Y. Infrared and visible image registration algorithm based on edge structure features[J]. Infrared Technology, 2023, 45(8): 858-862.(in Chinese)

    [11] X X XING, C LUO, J ZHOU et al. Combining regional energy and intuitionistic fuzzy sets for infrared and visible image fusion. Sensors, 21, 7813(2021).

    [12] 林剑萍, 廖一鹏. 结合分数阶显著性检测及量子烟花算法的NSST域图像融合[J]. 光学 精密工程, 2021, 29(6): 1406-1419. doi: 10.37188/OPE.20212906.1406LINJ P, LIAOY P. A novel image fusion method with fractional saliency detection and QFWA in NSST[J]. Opt. Precision Eng., 2021, 29(6): 1406-1419.(in Chinese). doi: 10.37188/OPE.20212906.1406

    [13] 沈瑜, 陈小朋, 杨倩. 多方向Laplacian能量和与tetrolet变换的图像融合[J]. 中国图象图形学报, 2020, 25(4): 721-731. doi: 10.11834/jig.190311SHENY, CHENX P, YANGQ. Image fusion of multidirectional sum modified Laplacian and tetrolet transform[J]. Journal of Image and Graphics, 2020, 25(4): 721-731.(in Chinese). doi: 10.11834/jig.190311

    [14] L L LI, M LV, Z H JIA et al. An effective infrared and visible image fusion approach via rolling guidance filtering and gradient saliency map. Remote Sensing, 15, 2486(2023).

    [15] X ZHANG, C S WANG, G T CHEN et al. Infrared and visible image fusion via NSCT and gradient domain PCNN, 12065, 443-452(2021).

    [16] A FRANZ, I C CARLSEN. Adaptive point-based elastic image registration.

    [17] H ANZID, G LE GOIC, A BEKKARI et al. A new SURF-based algorithm for robust registration of multimodal images data. The Visual Computer, 39, 1667-1681(2023).

    [18] 王满利, 王晓龙, 张长森. 基于动态范围压缩增强和NSST的红外与可见光图像融合算法[J]. 光子学报, 2022, 51(9): 277-291. doi: 10.3788/gzxb20225109.0910002WANGM L, WANGX L, ZHANGCH S. Infrared and visible image fusion algorithm based on dynamic range compression enhancement and NSST[J]. Acta Photonica Sinica, 2022, 51(9): 277-291.(in Chinese). doi: 10.3788/gzxb20225109.0910002

    [19] 杨艳春, 裴佩佩, 党建武, 等. 基于交替梯度滤波器和改进PCNN的红外与可见光图像融合[J]. 光学 精密工程, 2022, 30(9): 1123-1138. doi: 10.37188/OPE.20223009.1123YANGY CH, PEIP P, DANGJ W, et al. Infrared and visible image fusion based on alternating gradient filter and improved PCNN[J]. Opt. Precision Eng., 2022, 30(9): 1123-1138.(in Chinese). doi: 10.37188/OPE.20223009.1123

    [20] 李云红, 罗雪敏, 苏雪平, 等. 基于改进曲率尺度空间算法的电力设备红外与可见光图像配准[J]. 激光与光电子学进展, 2022, 59(12): 1210010. doi: 10.3788/LOP202259.1210010LIY H, LUOX M, SUX P, et al. Registration method for power equipment infrared and visible images based on improved curvature scale space algorithm[J]. Laser & Optoelectronics Progress, 2022, 59(12): 1210010.(in Chinese). doi: 10.3788/LOP202259.1210010

    [21] 张贵仓, 苏金凤, 拓明秀. DTCWT域的红外与可见光图像融合算法[J]. 计算机工程与科学, 2020, 42(7): 1226-1233. doi: 10.3969/j.issn.1007-130X.2020.07.011ZHANGG C, SUJ F, TUOM X. Fusion algorithm of infrared and visible images in DTCWT domain[J]. Computer Engineering & Science, 2020, 42(7): 1226-1233.(in Chinese). doi: 10.3969/j.issn.1007-130X.2020.07.011

    [22] A SELVARAJ, P GANESAN. Infrared and visible image fusion using multi-scale NSCT and rolling-guidance filter. IET Image Processing, 14, 4210-4219(2020).

    [23] T M GHONIEMY, M M HAMMAD, A S AMEIN et al. Multi-stage guided-filter for SAR and optical satellites images fusion using Curvelet and Gram Schmidt transforms for maritime surveillance. International Journal of Image and Data Fusion, 14, 38-57(2023).

    [24] J Y MA, Y MA, C LI. Infrared and visible image fusion methods and applications: a survey. Information Fusion, 45(2019).

    [25] 沈瑜, 伍忠东, 王小鹏, 等. 基于模糊算子的Tetrolet变换图像融合算法[J]. 计算机科学与探索, 2015, 9(9): 1132-1138.SHENY, WUZH D, WANGX P, et al. Tetrolet transform images fusion algorithm based on fuzzy operator[J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1132-1138.(in Chinese)

    [26] G M CUI, H J FENG, Z H XU et al. Detail preserved fusion of visible and infrared images using regional saliency extraction and multi-scale image decomposition. Optics Communications, 341, 199-209(2015).

    [27] A ABOAH, B WANG, U BAGCI et al. Real-time multi-class helmet violation detection using few-shot data sampling technique and YOLOv8, 17, 5349-5357(2023).

    Yaohua DENG, Zhihai HUANG. Multispectral image fusion method for surface defect detection of IC devices[J]. Optics and Precision Engineering, 2024, 32(5): 740
    Download Citation