• Journal of Geo-information Science
  • Vol. 22, Issue 9, 1799 (2020)
Mingjie LIU1,2, Zhuokui XU1,3, Yunbing GAO2,4,*, Jing YANG2,4..., Yuchun PAN2,4, Bingbo GAO5, Yanbing ZHOU2,4, Wanpeng ZHOU2,6 and Ling WANG7|Show fewer author(s)
Author Affiliations
  • 1School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China
  • 2Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
  • 3Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology),Changsha 410114, China
  • 4National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China
  • 5China Agricultural University, Beijing 100083, China
  • 6Henan Polytechnic University, Jiaozuo 454003, China
  • 7Institute of Agricultural Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
  • show less
    DOI: 10.12082/dqxxkx.2020.190441 Cite this Article
    Mingjie LIU, Zhuokui XU, Yunbing GAO, Jing YANG, Yuchun PAN, Bingbo GAO, Yanbing ZHOU, Wanpeng ZHOU, Ling WANG. Estimating Soil Organic Matter based on Machine Learning Under Sparse Sample[J]. Journal of Geo-information Science, 2020, 22(9): 1799 Copy Citation Text show less
    Research Roadmap
    Fig. 1. Research Roadmap
    The structure chart of General Regression Neural Network
    Fig. 2. The structure chart of General Regression Neural Network
    The structurechart of Random Forest
    Fig. 3. The structurechart of Random Forest
    The overview of Daxing district of Bejing
    Fig. 4. The overview of Daxing district of Bejing
    Variograms founction and related parameters of all experimental groups
    Fig. 5. Variograms founction and related parameters of all experimental groups
    Comparison of the results predicted by the three methods in D2703, D676, D169 and D43
    Fig. 6. Comparison of the results predicted by the three methods in D2703, D676, D169 and D43
    The change of RMSE of GRNN, RF and Ordinary Kriging when the number of sampling points decreases
    Fig. 7. The change of RMSE of GRNN, RF and Ordinary Kriging when the number of sampling points decreases
    方差来源偏差平方和自由度Df均方FP
    用地类型组间351.750487.9386.8710.000
    组内1023.8688012.796
    总体1375.61884
    土壤质地组间356.4053118.8029.4420.000
    组内1019.2138112.583
    总体1375.61884
    畜禽粪便利用强度组间241.351548.2703.3620.008
    组内1134.2677914.358
    总体1375.61884
    土壤类型组间0.94520.4720.0280.972
    组内1374.6748216.764
    总体1375.61884
    植被指数组间17.59228.7960.5310.590
    组内1358.0278216.561
    总体1375.61884
    Table 1. Variance analysis of soil organic matter
    实验组极大值/(g/kg)极小值/(g/kg)平均值/(g/kg)标准差/(g/kg)变异系数偏度峰度K-S双侧显著性
    D270324.731.2010.493.9137.280.147-0.0980.302
    D135224.731.6510.533.9237.230.159-0.0030.632
    D67624.731.6510.584.1138.870.3180.0360.640
    D33924.731.8110.553.9437.320.2230.2920.946
    D16922.981.9810.203.9939.080.2900.1120.964
    D8518.052.0310.934.0537.01-0.181-0.8040.934
    D43_117.974.3511.073.4631.24-0.187-0.6160.972
    D43_217.732.9810.074.1741.390.122-0.8930.951
    D43_317.843.5311.103.5331.80-0.091-0.9000.855
    D43_419.672.0210.334.0439.130.128-0.0640.906
    D43_517.682.1910.394.4642.90-0.329-0.9980.445
    D22_118.283.5310.704.3040.130.293-0.9880.611
    D22_217.613.9111.283.8434.03-0.037-0.6340.940
    D22_316.403.7210.493.6034.29-0.380-0.6920.783
    D22_415.344.2910.563.2430.72-0.320-0.8250.912
    D22_517.862.369.354.3646.600.260-0.5400.999
    Table 2. Descriptive statistics of soil organic matter in all experimental groups in the study area
    土壤属性丰富较丰富中等较缺乏缺乏极缺乏
    有机质/(g/kg)>4030~4020~3010~206~10< 6
    Table 3. Soil organic matter content grading standard
    实验组RMSEMRE/%MAE
    KrigeGRNNRFKrigeGRNNRFKrigeGRNNRF
    D27032.823.112.9926.8929.5928.922.212.432.35
    D13523.023.173.0129.5430.2829.503.022.462.36
    D6763.453.343.2333.0031.9430.502.742.652.57
    D3393.383.173.1735.6030.6431.192.822.472.53
    D1693.553.413.3135.9236.6434.392.832.752.61
    D854.103.172.9643.7633.3730.453.472.722.46
    D43_13.362.842.7230.4025.6323.732.742.312.18
    D43_24.133.193.1144.5834.5233.703.342.702.65
    D43_33.683.143.3135.5330.2631.933.172.672.91
    D43_43.952.763.1844.8633.5937.363.212.362.69
    D43_54.693.423.6167.4438.4647.364.062.703.01
    D22_14.343.223.4243.6035.0633.763.772.862.91
    D22_24.312.432.6265.6424.6026.553.832.132.28
    D22_33.902.893.0777.1127.6333.043.542.272.64
    D22_43.532.562.8658.3823.2327.423.032.182.45
    D22_54.312.982.98146.3535.8341.133.792.442.55
    Table 4. Prediction accuracy of GRNN, RF and Ordinary Krigingin all experimental groups
    实验组平均最短距离/mMoran's IZ得分P实验组平均最短距离/mMoran's IZ得分P
    D2703371.450.3556.780.00D43_3*2615.740.151.150.25
    D1352425.630.3330.830.00D43_4*3109.010.151.300.19
    D676567.680.3314.990.00D43_5*2909.110.080.830.41
    D339810.790.208.240.00D22_1*4237.90-0.32-1.390.17
    D1691285.910.175.680.00D22_2*4384.49-0.15-0.530.60
    D851914.450.193.060.00D22_3*3662.95-0.10-0.190.85
    D43_12792.950.222.410.02D22_4*4342.870.100.740.46
    D43_23110.800.141.520.13D22_5*4723.02-0.11-0.480.63
    Table 5. Spatial correlation analysis of all experimental groupsamples
    实验组土地利用类型土壤质地畜禽粪便影响强度
    qpqpqp
    D27030.1820.0000.1990.0000.1480.000
    D13520.2090.0000.1900.0000.1390.000
    D6760.1980.0000.2330.0000.1710.000
    D3390.2120.0000.1890.0000.1380.000
    D1690.2100.0000.2290.0000.2020.000
    D850.2560.0670.2590.0160.1750.035
    D430.5000.0040.1770.0710.3450.050
    D220.4960.0160.4770.0490.7420.034
    Table 6. Detected result of three influence factor of soil organic matter
    实验组KrigeGRNNRF实验组KrigeGRNNRF
    D27030.686**0.608**0.642**D43_30.1550.388*0.392**
    D13520.635**0.590**0.637**D43_40.1530.669**0.576**
    D6760.543**0.581**0.616**D43_5-0.0670.591**0.577**
    D3390.450**0.580**0.578**D22_1-0.1370.572**0.590**
    D1690.433**0.500**0.545**D22_2-0.3430.709**0.630**
    D850.1750.599**0.660**D22_3-0.0940.584**0.440*
    D43_10.2100.532**0.594**D22_4-0.1020.547**0.398*
    D43_20.1290.559**0.627**D22_50.0540.635**0.762**
    Table 7. The correlation analysis between the observed values and predicted values of GRNN, RF and Ordinary Kriging
    Mingjie LIU, Zhuokui XU, Yunbing GAO, Jing YANG, Yuchun PAN, Bingbo GAO, Yanbing ZHOU, Wanpeng ZHOU, Ling WANG. Estimating Soil Organic Matter based on Machine Learning Under Sparse Sample[J]. Journal of Geo-information Science, 2020, 22(9): 1799
    Download Citation