• Photonics Research
  • Vol. 12, Issue 10, 2088 (2024)
José A. Rodrigo*, Enar Franco, and Óscar Martínez-Matos
Author Affiliations
  • Universidad Complutense de Madrid, Facultad de Ciencias Fsicas, Ciudad Universitaria s/n, Madrid 28040, Spain
  • show less
    DOI: 10.1364/PRJ.525691 Cite this Article Set citation alerts
    José A. Rodrigo, Enar Franco, Óscar Martínez-Matos, "Surface laser traps with conformable phase-gradient optical force field enable multifunctional manipulation of particles," Photonics Res. 12, 2088 (2024) Copy Citation Text show less
    References

    [1] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett., 11, 288-290(1986).

    [2] A. Ashkin, J. M. Dziedzic, T. Yamane. Optical trapping and manipulation of single cells using infrared laser beams. Nature, 330, 769-771(1987).

    [3] P. M. Bendix, L. Jauffred, K. Norregaard. Optical trapping of nanoparticles and quantum dots. IEEE J. Sel. Topics Quantum Electron., 20, 4800112(2014).

    [4] A. S. Urban, S. Carretero-Palacios, A. A. Lutich. Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. Nanoscale, 6, 4458-4474(2014).

    [5] D. Gao, W. Ding, M. Nieto-Vesperinas. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [6] P. Zemánek, G. Volpe, A. Jonáš. Perspective on light-induced transport of particles: from optical forces to phoretic motion. Adv. Opt. Photonics, 11, 577-678(2019).

    [7] S. Sukhov, A. Dogariu. Non-conservative optical forces. Rep. Prog. Phys., 80, 112001(2017).

    [8] Y. Y. Roichman, B. Sun, Y. Y. Roichman. Optical forces arising from phase gradients. Phys. Rev. Lett., 100, 8-11(2008).

    [9] S.-H. Lee, Y. Roichman, D. G. Grier. Optical solenoid beams. Opt. Express, 18, 1974-1977(2010).

    [10] E. R. Shanblatt, D. G. Grier. Extended and knotted optical traps in three dimensions. Opt. Express, 19, 5833-5838(2011).

    [11] J. A. Rodrigo, T. Alieva. Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond. Optica, 2, 812-815(2015).

    [12] J. A. Rodrigo, M. Angulo, T. Alieva. All-optical motion control of metal nanoparticles powered by propulsion forces tailored in 3D trajectories. Photonics Res., 9, 1-12(2021).

    [13] J. A. Rodrigo, O. Martínez-Matos, T. Alieva. Helix-shaped tractor and repulsor beams enabling bidirectional optical transport of particles en masse. Photonics Res., 10, 2560-2574(2022).

    [14] K. A. Forbes, D. S. Bradshaw, D. L. Andrews. Optical binding of nanoparticles. Nanophotonics, 9, 1-17(2019).

    [15] K. Dholakia, P. Zemánek. Colloquium: gripped by light: optical binding. Rev. Mod. Phys., 82, 1767-1791(2010).

    [16] F. Han, J. Parker, Y. Yifat. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun., 9, 4897(2018).

    [17] J. Parker, C. W. Peterson, Y. Yifat. Optical matter machines: angular momentum conversion by collective modes in optically bound nanoparticle arrays. Optica, 7, 1341-1348(2020).

    [18] F. Nan, X. Li, S. Zhang. Creating stable trapping force and switchable optical torque with tunable phase of light. Sci. Adv., 8, eadd6664(2022).

    [19] D. Haefner, S. Sukhov, A. Dogariu. Conservative and nonconservative torques in optical binding. Phys. Rev. Lett., 103, 173602(2009).

    [20] T. Qi, F. Han, W. Liu. Stable negative optical torque in optically bound nanoparticle dimers. Nano Lett., 22, 8482-8486(2022).

    [21] D. B. Ruffner, D. G. Grier. Optical forces and torques in nonuniform beams of light. Phys. Rev. Lett., 108, 173602(2012).

    [22] T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe. Optical tweezers computational toolbox. J. Opt. A, 9, S196-S203(2007).

    [23] J. A. Rodrigo, M. Angulo, T. Alieva. Tailored optical propulsion forces for controlled transport of resonant gold nanoparticles and associated thermal convective fluid flows. Light Sci. Appl., 9, 181(2020).

    [24] B. Leimkuhler, C. Matthews. Rational construction of stochastic numerical methods for molecular sampling. Appl. Math. Res. eXpress, 2013, 34-56(2012).

    [25] N. Sule, S. A. Rice, S. K. Gray. An electrodynamics-Langevin dynamics (ED-LD) approach to simulate metal nanoparticle interactions and motion. Opt. Express, 23, 29978-29992(2015).

    [26] M. Sachs, B. Leimkuhler, V. Danos. Langevin dynamics with variable coefficients and nonconservative forces: from stationary states to numerical methods. Entropy, 19, 647(2017).

    [27] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787-2809(2004).

    [28] R. Zwanzig. Nonequilibrium Statistical Mechanics(2001).

    [29] J.-W. Liaw, M.-C. Huang, H.-Y. Chao. Spin and orbital rotation of plasmonic dimer driven by circularly polarized light. Nanoscale Res. Lett., 13, 322(2018).

    [30] L. N. Trefethen. Numerical conformal mapping with rational functions. Comput. Methods Funct. Theory, 20, 369-387(2020).

    [31] J. Gielis. A generic geometric transformation that unifies a wide range of natural and abstract shapes. Am. J. Bot., 90, 333-338(2003).

    [32] J. A. Rodrigo, M. Angulo, T. Alieva. Dynamic morphing of 3D curved laser traps for all-optical manipulation of particles. Opt. Express, 26, 18608-18620(2018).

    [33] J. A. Davis, D. M. Cottrell, J. Campos. Encoding amplitude information onto phase-only filters. Appl. Opt., 38, 5004-5013(1999).

    [34] C.-K. Chou, W.-L. Chen, P. T. Fwu. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. J. Biomed. Opt., 13, 014005(2008).

    [35] J. Goodman. Introduction to Fourier Optics(2005).

    [36] J.-Y. Tinevez, N. Perry, J. Schindelin. TrackMate: an open and extensible platform for single-particle tracking. Methods, 115, 80-90(2017).

    [37] Y. Roichman, D. G. Grier, G. Zaslavsky. Anomalous collective dynamics in optically driven colloidal rings. Phys. Rev. E, 75, 020401(2007).

    [38] N. Uchida, R. Golestanian. Synchronization and collective dynamics in a carpet of microfluidic rotors. Phys. Rev. Lett., 104, 178103(2010).

    [39] B. Uma, T. N. Swaminathan, R. Radhakrishnan. Nanoparticle Brownian motion and hydrodynamic interactions in the presence of flow fields. Phys. Fluids, 23, 073602(2011).

    [40] S. Chen, C. W. Peterson, J. A. Parker. Data-driven reaction coordinate discovery in overdamped and non-conservative systems: application to optical matter structural isomerization. Nat. Commun., 12, 2548(2021).

    [41] P. Figliozzi, N. Sule, Z. Yan. Driven optical matter: dynamics of electrodynamically coupled nanoparticles in an optical ring vortex. Phys. Rev. E, 95, 022604(2017).

    [42] M. He, Y. Liang, X. Yun. Manipulation of low-refractive-index particles using customized dark traps. Photonics Res., 12, 1334-1343(2024).

    José A. Rodrigo, Enar Franco, Óscar Martínez-Matos, "Surface laser traps with conformable phase-gradient optical force field enable multifunctional manipulation of particles," Photonics Res. 12, 2088 (2024)
    Download Citation