• Chinese Optics Letters
  • Vol. 19, Issue 2, 022602 (2021)
Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, and Xiumin Gao*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202119.022602 Cite this Article Set citation alerts
    Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, Xiumin Gao, "Experimental and theoretical study of linearly polarized Lorentz–Gauss beams with heterogeneous distribution," Chin. Opt. Lett. 19, 022602 (2021) Copy Citation Text show less
    References

    [1] S. Hasegawa, K. Shiono, Y. Hayasaki. Femtosecond laser processing with a holographic line-shaped beam. Opt. Express, 23, 23185(2015).

    [2] G. C. Rodrigues, J. R. Duflou. Into polarization control in laser cutting with direct diode lasers. J. Laser Appl., 28, 022207(2016).

    [3] A. Salama, L. Li, P. Mativenga, A. Sabli. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites. Appl. Phys. A, 122, 73(2016).

    [4] Y. Liu, Y. Guo, J. Lin, G. Huang, C. Duan, F. Li. Measurement of the electric dipole moment of NO (X2 Π ν = 0, 1) by mid-infrared laser magnetic resonance spectroscopy. Mol. Phys., 99, 1457(2001).

    [5] M. Mori, S. Kawamura, T. Ikeda, W.-G. Jin. Profile measurement of laser microbeam produced by glass capillaries, 1(2019).

    [6] W. Schweinberger, L. Vamos, J. Xu, S. A. Hussain, C. Baune, S. Rode, I. Pupeza. Interferometric delay tracking for low-noise Mach-Zehnder-type scanning measurements. Opt. Express, 27, 4789(2019).

    [7] L.-M. Zhou, K.-W. Xiao, Z.-Q. Yin, J. Chen, N. Zhao. Sensitivity of displacement detection for a particle levitated in the doughnut beam. Opt. Lett., 43, 4582(2018).

    [8] Y. Hu, X. Liu, Y. Li, M. Ding. An electro-optic modulator detection method in all optical atomic magnetometer, Tu3A.6(2016).

    [9] J.-W. Zhou, P.-F. Wang, F.-Z. Shi, P. Huang, X. Kong, X.-K. Xu. Quantum information processing and metrology with color centers in diamonds. Front. Phys., 9, 587(2014).

    [10] L. Zhang, S. Bao, H. Zhang, G. Raithel, J. Zhao, L. Xiao,, S. Jia. Interplay between optical pumping and Rydberg EIT in magnetic fields. Opt. Express, 26, 29931(2018).

    [11] H. Li. Research on target information optics communications transmission characteristic and performance in multi-screens testing system. Opt. Commun., 364, 139(2016).

    [12] F. Flamini, N. Spagnolo, F. Sciarrino. Photonic quantum information processing: a review. Rep. Prog. Phys., 82, 016001(2018).

    [13] A. E. Willner, S. Khaleghi, M. R. Chitgarha, O. F. Yilmaz. All-optical signal processing. J. Lightwave Technol., 32, 660(2013).

    [14] H. Ou, Y. Wu, E. Lam, B.-Z. Wang. Enhanced edge extraction using spiral phase plate in optical scanning holography based on Gaussian beam apodization, W2A.26(2017).

    [15] U. Ruiz, P. Pagliusi, C. Provenzano, G. Cipparrone. Vector beams generated by tunable liquid crystal polarization holograms. J. Appl. Phys., 121, 153104(2017).

    [16] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14(2016).

    [17] X. Yi, Z. Li, Z. Liu. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt., 54, 1273(2015).

    [18] H. C. Casey, M. B. Panish. Heterostructure Lasers(1978).

    [19] H. Karstensen. Laser diodes to single-mode fiber couping with ball lenses. J. Opt. Commun., 9, 42(1988).

    [20] D. D. Cook, F. R. Nash. Gain-induced guiding and astigmatic output beam of GaAs lasers. J. Appl. Phys., 46, 1660(1975).

    [21] P. Dumke. The angular beam divergence in double-henterojunction lasers with very thin active regions. J. Quantum Electron., 11, 400(1975).

    [22] O. E. Gawhary, S. Severini. Lorentz beams and symmetry properties in paraxial optics. J. Opt. A: Pure Appl. Opt., 8, 409(2006).

    [23] D. Liu, H. Yin, Y. Wang. Nonparaxial propagation of a partially coherent Lorentz-Gauss beam. Optik, 155, 190(2018).

    [24] X. Wang, Z. Liu, D. Zhao. Nonparaxial propagation of Lorentz–Gauss beams in uniaxial crystal orthogonal to the optical axis. J. Opt. Soc. Am. A, 31, 872(2014).

    [25] G.-Q. Zhou. Study on the propagation properties of Lorentz beam. Chin. J. Lasers, 36, 2326(2008).

    [26] Y. Jiang, K. Huang, X. Lu. Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle. Opt. Express, 19, 9708(2011).

    [27] G. Zhou, G. Ru. Angular momentum density of a linearly polarized Lorentz–Gauss vortex beam. Opt. Commun., 313, 157(2014).

    [28] D. Liu, H. Yin, G. Wang, Y. Wang. Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence. Appl. Opt., 56, 8785(2017).

    [29] Y. Miao, G. Wang, X. Zeng, G. Sui, R. Zhang, Q. Zhan. Focusing properties of radially polarized helico-conical Lorentz-Gauss beam. Optik, 136, 289(2017).

    [30] C. Kamacıoğlu, Y. Baykal. Generalized expression for optical source fields. Opt. Laser Technol., 44, 1706(2012).

    [31] X. Zeng, Y. Miao, G. Wang, Q. Zhan, R. Hong, R. Zhang. Tunable optical gradient force of radially polarized Lorentz-Gauss vortex beam by sine-azimuthal variation wavefront. Optik, 130, 481(2017).

    [32] G. Zhou. Beam propagation factors of a Lorentz–Gauss beam. Appl. Phys. B, 96, 149(2009).

    [33] G. Zhou. Far-field properties of super-Lorentzian–Gauss mode beams. J. Opt., 12, 035704(2010).

    [34] D. Liu, G. Wang, Y. Wang. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence. Opt. Laser Technol., 98, 309(2018).

    [35] A. Torre. Wigner distribution function of a Lorentz–Gauss vortex beam: alternative approach. Appl. Phys. B, 122, 55(2016).

    [36] C. Wang, Y. Ren, T. Liu, L. L. Chen, S. Qiu. New kind of Hermite-Gaussian-like optical vortex generated by cross phase. Chin. Opt. Lett., 18, 100501(2020).

    [37] X. Yang, S. B. Wei, S. S. Kou, F. Yuan, E. Cheng. Misalignment measurement of optical vortex beam in free space. Chin. Opt. Lett., 17, 090604(2019).

    [38] G. X. Wang, Y. Li, X.Z. Shan, Y. Miao, X. M. Gao. Hermite-Gaussian beams with sinusoidal vortex phase modulation. Chin. Opt. Lett., 18, 042601(2020).

    [39] F. Rui, D. Zhang, M. Ting, X. Gao, S. Zhuang. Focusing of linearly polarized Lorentz–Gauss beam with one optical vortex. Optik-Int. J. Light Electron Opt., 124, 2969(2013).

    [40] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A, 253, 358(1959).

    [41] W. Zhu, H. Guan, H. Lu, J. Tang, Z. Li, J. Yu, Z. Chen. Orbital angular momentum sidebands of vortex beams transmitted through a thin metamaterial slab. Opt. Express, 26, 17378(2018).

    [42] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).

    [43] C. Hnatovsky, V. G. Shvedov, W. Krolikowski. The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses. Opt. Express, 21, 12651(2013).

    [44] S. N. Khonina, V. V. Kotlyar, V. A. Soifer, M. V. Shinkaryev, G. V. Uspleniev. Trochoson. Opt. Commun., 91, 158(1992).

    [45] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon., 8, 200(2016).

    Data from CrossRef

    [1] Yafei Du, Deming Liu, Songnian Fu, Yuncai Wang, Yuwen Qin. Reconfigurable generation of double-ring perfect vortex beam. Optics Express, 29, 17353(2021).

    Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, Xiumin Gao, "Experimental and theoretical study of linearly polarized Lorentz–Gauss beams with heterogeneous distribution," Chin. Opt. Lett. 19, 022602 (2021)
    Download Citation