• Chinese Optics Letters
  • Vol. 19, Issue 2, 022602 (2021)
Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, and Xiumin Gao*
Author Affiliations
  • School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3788/COL202119.022602 Cite this Article Set citation alerts
    Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, Xiumin Gao. Experimental and theoretical study of linearly polarized Lorentz–Gauss beams with heterogeneous distribution[J]. Chinese Optics Letters, 2021, 19(2): 022602 Copy Citation Text show less
    References

    [1] S. Hasegawa, K. Shiono, Y. Hayasaki. Femtosecond laser processing with a holographic line-shaped beam. Opt. Express, 23, 23185(2015).

    [2] G. C. Rodrigues, J. R. Duflou. Into polarization control in laser cutting with direct diode lasers. J. Laser Appl., 28, 022207(2016).

    [3] A. Salama, L. Li, P. Mativenga, A. Sabli. High-power picosecond laser drilling/machining of carbon fibre-reinforced polymer (CFRP) composites. Appl. Phys. A, 122, 73(2016).

    [4] Y. Liu, Y. Guo, J. Lin, G. Huang, C. Duan, F. Li. Measurement of the electric dipole moment of NO (X2 Π ν = 0, 1) by mid-infrared laser magnetic resonance spectroscopy. Mol. Phys., 99, 1457(2001).

    [5] M. Mori, S. Kawamura, T. Ikeda, W.-G. Jin. Profile measurement of laser microbeam produced by glass capillaries, 1(2019).

    [6] W. Schweinberger, L. Vamos, J. Xu, S. A. Hussain, C. Baune, S. Rode, I. Pupeza. Interferometric delay tracking for low-noise Mach-Zehnder-type scanning measurements. Opt. Express, 27, 4789(2019).

    [7] L.-M. Zhou, K.-W. Xiao, Z.-Q. Yin, J. Chen, N. Zhao. Sensitivity of displacement detection for a particle levitated in the doughnut beam. Opt. Lett., 43, 4582(2018).

    [8] Y. Hu, X. Liu, Y. Li, M. Ding. An electro-optic modulator detection method in all optical atomic magnetometer, Tu3A.6(2016).

    [9] J.-W. Zhou, P.-F. Wang, F.-Z. Shi, P. Huang, X. Kong, X.-K. Xu. Quantum information processing and metrology with color centers in diamonds. Front. Phys., 9, 587(2014).

    [10] L. Zhang, S. Bao, H. Zhang, G. Raithel, J. Zhao, L. Xiao,, S. Jia. Interplay between optical pumping and Rydberg EIT in magnetic fields. Opt. Express, 26, 29931(2018).

    [11] H. Li. Research on target information optics communications transmission characteristic and performance in multi-screens testing system. Opt. Commun., 364, 139(2016).

    [12] F. Flamini, N. Spagnolo, F. Sciarrino. Photonic quantum information processing: a review. Rep. Prog. Phys., 82, 016001(2018).

    [13] A. E. Willner, S. Khaleghi, M. R. Chitgarha, O. F. Yilmaz. All-optical signal processing. J. Lightwave Technol., 32, 660(2013).

    [14] H. Ou, Y. Wu, E. Lam, B.-Z. Wang. Enhanced edge extraction using spiral phase plate in optical scanning holography based on Gaussian beam apodization, W2A.26(2017).

    [15] U. Ruiz, P. Pagliusi, C. Provenzano, G. Cipparrone. Vector beams generated by tunable liquid crystal polarization holograms. J. Appl. Phys., 121, 153104(2017).

    [16] J. Wang. Advances in communications using optical vortices. Photon. Res., 4, B14(2016).

    [17] X. Yi, Z. Li, Z. Liu. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence. Appl. Opt., 54, 1273(2015).

    [18] H. C. Casey, M. B. Panish. Heterostructure Lasers(1978).

    [19] H. Karstensen. Laser diodes to single-mode fiber couping with ball lenses. J. Opt. Commun., 9, 42(1988).

    [20] D. D. Cook, F. R. Nash. Gain-induced guiding and astigmatic output beam of GaAs lasers. J. Appl. Phys., 46, 1660(1975).

    [21] P. Dumke. The angular beam divergence in double-henterojunction lasers with very thin active regions. J. Quantum Electron., 11, 400(1975).

    [22] O. E. Gawhary, S. Severini. Lorentz beams and symmetry properties in paraxial optics. J. Opt. A: Pure Appl. Opt., 8, 409(2006).

    [23] D. Liu, H. Yin, Y. Wang. Nonparaxial propagation of a partially coherent Lorentz-Gauss beam. Optik, 155, 190(2018).

    [24] X. Wang, Z. Liu, D. Zhao. Nonparaxial propagation of Lorentz–Gauss beams in uniaxial crystal orthogonal to the optical axis. J. Opt. Soc. Am. A, 31, 872(2014).

    [25] G.-Q. Zhou. Study on the propagation properties of Lorentz beam. Chin. J. Lasers, 36, 2326(2008).

    [26] Y. Jiang, K. Huang, X. Lu. Radiation force of highly focused Lorentz-Gauss beams on a Rayleigh particle. Opt. Express, 19, 9708(2011).

    [27] G. Zhou, G. Ru. Angular momentum density of a linearly polarized Lorentz–Gauss vortex beam. Opt. Commun., 313, 157(2014).

    [28] D. Liu, H. Yin, G. Wang, Y. Wang. Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence. Appl. Opt., 56, 8785(2017).

    [29] Y. Miao, G. Wang, X. Zeng, G. Sui, R. Zhang, Q. Zhan. Focusing properties of radially polarized helico-conical Lorentz-Gauss beam. Optik, 136, 289(2017).

    [30] C. Kamacıoğlu, Y. Baykal. Generalized expression for optical source fields. Opt. Laser Technol., 44, 1706(2012).

    [31] X. Zeng, Y. Miao, G. Wang, Q. Zhan, R. Hong, R. Zhang. Tunable optical gradient force of radially polarized Lorentz-Gauss vortex beam by sine-azimuthal variation wavefront. Optik, 130, 481(2017).

    [32] G. Zhou. Beam propagation factors of a Lorentz–Gauss beam. Appl. Phys. B, 96, 149(2009).

    [33] G. Zhou. Far-field properties of super-Lorentzian–Gauss mode beams. J. Opt., 12, 035704(2010).

    [34] D. Liu, G. Wang, Y. Wang. Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence. Opt. Laser Technol., 98, 309(2018).

    [35] A. Torre. Wigner distribution function of a Lorentz–Gauss vortex beam: alternative approach. Appl. Phys. B, 122, 55(2016).

    [36] C. Wang, Y. Ren, T. Liu, L. L. Chen, S. Qiu. New kind of Hermite-Gaussian-like optical vortex generated by cross phase. Chin. Opt. Lett., 18, 100501(2020).

    [37] X. Yang, S. B. Wei, S. S. Kou, F. Yuan, E. Cheng. Misalignment measurement of optical vortex beam in free space. Chin. Opt. Lett., 17, 090604(2019).

    [38] G. X. Wang, Y. Li, X.Z. Shan, Y. Miao, X. M. Gao. Hermite-Gaussian beams with sinusoidal vortex phase modulation. Chin. Opt. Lett., 18, 042601(2020).

    [39] F. Rui, D. Zhang, M. Ting, X. Gao, S. Zhuang. Focusing of linearly polarized Lorentz–Gauss beam with one optical vortex. Optik-Int. J. Light Electron Opt., 124, 2969(2013).

    [40] B. Richards, E. Wolf. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system. Proc. R. Soc. Lond. A, 253, 358(1959).

    [41] W. Zhu, H. Guan, H. Lu, J. Tang, Z. Li, J. Yu, Z. Chen. Orbital angular momentum sidebands of vortex beams transmitted through a thin metamaterial slab. Opt. Express, 26, 17378(2018).

    [42] V. Parigi, V. D’Ambrosio, C. Arnold, L. Marrucci, F. Sciarrino, J. Laurat. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory. Nat. Commun., 6, 7706(2015).

    [43] C. Hnatovsky, V. G. Shvedov, W. Krolikowski. The role of light-induced nanostructures in femtosecond laser micromachining with vector and scalar pulses. Opt. Express, 21, 12651(2013).

    [44] S. N. Khonina, V. V. Kotlyar, V. A. Soifer, M. V. Shinkaryev, G. V. Uspleniev. Trochoson. Opt. Commun., 91, 158(1992).

    [45] A. Forbes, A. Dudley, M. McLaren. Creation and detection of optical modes with spatial light modulators. Adv. Opt. Photon., 8, 200(2016).

    Data from CrossRef

    [1] Yafei Du, Deming Liu, Songnian Fu, Yuncai Wang, Yuwen Qin. Reconfigurable generation of double-ring perfect vortex beam. Optics Express, 29, 17353(2021).

    Guanxue Wang, Yu Miao, Yang Li, Xinzhi Shan, Xiumin Gao. Experimental and theoretical study of linearly polarized Lorentz–Gauss beams with heterogeneous distribution[J]. Chinese Optics Letters, 2021, 19(2): 022602
    Download Citation