• Chinese Optics Letters
  • Vol. 19, Issue 1, 013602 (2021)
Hao Sun1, Jie Yang2, Hengzhu Liu1, Dan Wu3, and Xin Zheng2、*
Author Affiliations
  • 1College of Computer, National University of Defense Technology, Changsha 410073, China
  • 2National Innovation Institute of Defense Technology, Beijing 100010, China
  • 3Graduate School, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202119.013602 Cite this Article Set citation alerts
    Hao Sun, Jie Yang, Hengzhu Liu, Dan Wu, Xin Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2021, 19(1): 013602 Copy Citation Text show less
    References

    [1] J. J. Longdell, E. Fraval, M. J. Sellars, N. B. Manson. Stopped light with storage times greater than one second using EIT in a solid. Phys. Rev. Lett., 95, 063601(2005).

    [2] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594(1999).

    [3] S. E. Harris. Electromagnetically induced transparency. Phys. Today, 50, 36(1997).

    [4] A. Kasapi, M. Jain, G. Y. Yin, S. E. Harris. Electromagnetically induced transparency: propagation dynamics. Phys. Rev. Lett., 74, 2447(1995).

    [5] Y. He, H. Zhou, Y. Jin, S. He. Plasmon induced transparency in a dielectric waveguide. Appl. Phys. Lett., 99, 043113(2011).

    [6] C. L. G. Alzar, M. A. G. Martinez, P. Nussenzveig. Classical analog of electromagnetically induced transparency. Am. J. Phys., 70, 37(2002).

    [7] X. Yang, M. Yu, D.-L. Kwong, C. W. Wong. All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett., 102, 173902(2009).

    [8] P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis. Low-loss metamaterials based on classical electromagnetically induced transparency. Phys. Rev. Lett., 102, 053901(2009).

    [9] Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, M. Lipson. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. Phys. Rev. Lett., 96, 123901(2006).

    [10] N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater., 8, 758(2009).

    [11] C. Liu, P. Liu, C. Yang, Y. Lin, H. Liu. Analogue of dual-controlled electromagnetically induced transparency based on a graphene metamaterial. Carbon, 142, 354(2019).

    [12] H. Jung, H. Jo, W. Lee, B. Kim, H. Choi, M. S. Kang, H. Lee. Electrical control of electromagnetically induced transparency by terahertz metamaterial funneling. Adv. Opt. Mater., 7, 1801205(2019).

    [13] M. Liu, Z. Tian, X. Zhang, J. Gu, C. Ouyang, J. Han, W. Zhang. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Opt. Express, 25, 19844(2017).

    [14] J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, W. Zhang. Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat. Commun., 3, 1151(2012).

    [15] R. Singh, I. A. I. Al-Naib, Y. Yang, D. R. Chowdhury, W. Cao, C. Rockstuhl, T. Ozaki, R. Morandotti, W. Zhang. Observing metamaterial induced transparency in individual Fano resonators with broken symmetry. Appl. Phys. Lett., 99, 201107(2011).

    [16] X. Yin, T. Feng, S. Yip, Z. Liang, A. Hui, J. C. Ho, J. Li. Tailoring electromagnetically induced transparency for terahertz metamaterials: from diatomic to triatomic structural molecules. Appl. Phys. Lett., 103, 021115(2013).

    [17] A. A. Yanik, A. E. Cetin, M. Huang, A. Artar, S. H. Mousavi, A. Khanikaev, J. H. Connor, G. Shvets, H. Altug. Seeing protein monolayers with naked eye through plasmonic Fano resonances. Proc. Natl. Acad. Sci., 108, 11784(2011).

    [18] N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, H. Giessen. Three-dimensional plasmon rulers. Science, 332, 1407(2011).

    [19] Z.-G. Dong, H. Liu, J.-X. Cao, T. Li, S.-M. Wang, X. Zhang. Enhanced sensing performance by the plasmonic analogue of electromagnetically induced transparency in active metamaterials. Appl. Phys. Lett., 97, 114101(2010).

    [20] R. Taubert, M. Hentschel, J. Kästel, H. Giessen. Classical analog of electromagnetically induced absorption in plasmonics. Nano Lett., 12, 1367(2012).

    [21] R. Schittny, M. Kadic, T. Buckmann, M. Wegener. Invisibility cloaking in a diffusive light scattering medium. Science, 345, 427(2014).

    [22] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 85, 3966(2000).

    [23] D. Lu, Z. Liu. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun., 3, 1205(2012).

    [24] X. Tian, Z.-Y. Li. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon. Res., 4, 146(2016).

    [25] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta-atoms. Adv. Mater., 30, 1802760(2018).

    [26] M. M. Jadidi, A. B. Sushkov, R. L. Myers-Ward, A. K. Boyd, K. M. Daniels, D. K. Gaskill, M. S. Fuhrer, H. D. Drew, T. E. Murphy. Tunable terahertz hybrid metal–graphene plasmons. Nano Lett., 15, 7099(2015).

    [27] Z. Chen, X. Chen, L. Tao, K. Chen, M. Long, X. Liu, K. Yan, R. I. Stantchev, E. Pickwell-MacPherson, J.-B. Xu. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun., 9, 4909(2018).

    [28] H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla. Experimental demonstration of frequency-agile terahertz metamaterials. Nat. Photon., 2, 295(2008).

    [29] Y. Fan, N.-H. Shen, F. Zhang, Q. Zhao, Z. Wei, P. Zhang, J. Dong, Q. Fu, H. Li, C. M. Soukoulis. Photoexcited graphene metasurfaces: significantly enhanced and tunable magnetic resonances. ACS Photon., 5, 1612(2018).

    [30] D. Shrekenhamer, J. Montoya, S. Krishna, W. J. Padilla. Four‐color Metamaterial absorber THz spatial light modulator. Adv. Opt. Mater., 1, 905(2013).

    [31] H. Jung, J. Koo, E. Heo, B. Cho, C. In, W. Lee, H. Jo, J. H. Cho, H. Choi, M. S. Kang, H. Lee. Electrically controllable molecularization of terahertz meta‐atoms. Adv. Mater., 30, 1802760(2018).

    [32] S. Sim, M. Brahlek, J. Moon, J. H. Sung, J. Park, S. Cha, S. Oh, M.-H. Jo, J.-H. Ahn, H. Choi. Ultra-high modulation depth exceeding 2400% in optically controlled topological surface plasmons. Nat. Commun., 6, 8814(2015).

    [33] W. M. Zhu, A. Q. Liu, T. Bourouina, D. P. Tsai, J. H. Teng, X. H. Zhang, G. Q. Lo, D. L. Kwong, N. I. Zheludev. Microelectromechanical Maltese-cross metamaterial with tunable terahertz anisotropy. Nat. Commun., 3, 1274(2012).

    [34] M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, R. D. Averitt. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature, 487, 345(2012).

    [35] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz frequency and phase tuning by all-optical molecularization of metasurfaces. Adv. Opt. Mater., 7, 1901050(2019).

    [36] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrafast terahertz transmission/group delay switching in photoactive WSe2-functionalized metaphotonic devices. Nano Energy, 7, 994(2019).

    [37] H. Sun, Y. Hu, Y. Tang, J. You, J. Zhou, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Photon. Res., 8, 263(2020).

    [38] H. Sun, Y. Tang, Y. Hu, J. You, H. Liu, X. Zheng. Ultrafast polarization-dependent all-optical switching of germanium-based metaphotonic devices. Chin. Opt. Lett., 18(2020).

    [39] J. Zhou, Y. Hu, T. Jiang, H. Ouyang, H. Li, Y. Sui, H. Hao, J. You, X. Zheng, Z. Xu, X. Cheng. Ultrasensitive polarization-dependent terahertz modulation in hybrid perovskites plasmon-induced transparency devices. Photon. Res., 7, 994(2019).

    [40] J. Zhou, C. Zhang, Q. Liu, J. You, X. Zheng, X. Cheng, T. Jiang. Controllable all-optical modulation speed in hybrid silicon-germanium devices utilizing the electromagnetically induced transparency effect. Nanophotonics, 9(2020).

    [41] Ultrafast frequency shift of electromagnetically induced transparency in terahertz metaphotonic devices. Laser Photon. Rev., 14, 1900338(2020).

    [42] Pump-color selective control of ultrafast all-optical switching dynamics in metaphotonic devices. Adv. Sci., 7, 2000799(2020).

    [43] Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett., 16, 4838(2016).

    CLP Journals

    [1] Hao Sun, Jianghua Zhang, Yuhua Tang, Hengzhu Liu, Jie Yang, Xin Zheng. Ultrafast all-optical switching of dual-band plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2022, 20(1): 013701

    [2] Yi Zhao, Qiuping Huang, Honglei Cai, Xiaoxia Lin, Hongchuan He, Hao Cheng, Tian Ma, Yalin Lu. Ultrafast control of slow light in THz electromagnetically induced transparency metasurfaces[J]. Chinese Optics Letters, 2021, 19(7): 073602

    Data from CrossRef

    [1] Yuze Hu, Mingyu Tong, Siyang Hu, Weibao He, Xiang’ai Cheng, Tian Jiang. Multidimensional engineered metasurface for ultrafast terahertz switching at frequency-agile channels. Nanophotonics, 0(2022).

    Hao Sun, Jie Yang, Hengzhu Liu, Dan Wu, Xin Zheng. Process-controllable modulation of plasmon-induced transparency in terahertz metamaterials[J]. Chinese Optics Letters, 2021, 19(1): 013602
    Download Citation