• Chinese Journal of Lasers
  • Vol. 47, Issue 1, 0102007 (2020)
Lanyun Qin1、**, Zixin Jin1, Shuo Zhao1, Jiaqiang Ni2, Yanmei Liu2, and Guang Yang1、*
Author Affiliations
  • 1Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process,Shenyang Aerospace University, Shenyang, Liaoning 110136, China
  • 2Shenyang Aircraft Industry (Group) Corporation Ltd., Shenyang, Liaoning 110034, China
  • show less
    DOI: 10.3788/CJL202047.0102007 Cite this Article Set citation alerts
    Lanyun Qin, Zixin Jin, Shuo Zhao, Jiaqiang Ni, Yanmei Liu, Guang Yang. Effect of α Texture on Mechanical Behavior of TC4 Alloy Fabricated by Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0102007 Copy Citation Text show less
    References

    [1] Li W, Liu J, Wen S F et al. Crystal orientation, crystallographic texture and phase evolution in the Ti-45Al-2Cr-5Nb alloy processed by selective laser melting[J]. Materials Characterization, 113, 125-133(2016).

    [2] Xiao Z N, Liu T T, Liao W H et al. Microstructure and mechanical properties of TC4 titanium alloy formed by selective laser melting after heat treatment[J]. Chinese Journal of Lasers, 44, 0902001(2017).

    [3] Agius D, Kourousis K I, Wallbrink C et al. Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation[J]. Materials Science and Engineering: A, 701, 85-100(2017).

    [4] Liu Z. Fatigue properties of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy produced by laser melting deposition[D]. Dalian: Dalian Jiaotong University, 28-30(2014).

    [5] Yan Z Y, Zhou Q J, Hou Y F et al. Effect of interlayer residence time on microstructures and mechanical properties of laser melting deposited TC11 titanium alloys[J]. Chinese Journal of Lasers, 45, 1102003(2018).

    [6] Li M D. Study on heat treatment process of TC4 titanium alloy by laser deposition manufacturing[D]. Shenyang: Shenyang Aerospace University, 15-20(2018).

    [7] Carroll B E, Palmer T A, Beese A M. Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 87, 309-320(2015).

    [8] Zhang Q, Chen J, Zhao Z et al. Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy[J]. Materials Science and Engineering: A, 673, 204-212(2016).

    [9] Yang J J, Yu H C, Wang Z M et al. Effect of crystallographic orientation on mechanical anisotropy of selective laser melted Ti-6Al-4V alloy[J]. Materials Characterization, 127, 137-145(2017).

    [10] Neikter M, Woracek R, Maimaitiyili T et al. Alpha texture variations in additive manufactured Ti-6Al-4V investigated with neutron diffraction[J]. Additive Manufacturing, 23, 225-234(2018).

    [11] Yang Y, Xu F, Huang A J et al. Evolution of microstructure of full lamellar titanium alloy BT18Y solutionized at α +β phase field[J]. Acta Metallrugica Sinica, 41, 713-720(2005).

    [12] Waryoba D R, Keist J S, Ranger C et al. Microtexture in additively manufactured Ti-6Al-4V fabricated using directed energy deposition[J]. Materials Science and Engineering: A, 734, 149-163(2018).

    [13] Bantounas I, Dye D, Lindley T C. The role of microtexture on the faceted fracture morphology in Ti-6Al-4V subjected to high-cycle fatigue[J]. Acta Materialia, 58, 3908-3918(2010).

    [14] Bantounas I, Lindley T C, Rugg D et al. Effect of microtexture on fatigue cracking in Ti-6Al-4V[J]. Acta Materialia, 55, 5655-5665(2007).

    [15] Liu J, Meng L, Zhu G H et al. Analysis on misorientation angle distribution of pipeline steels[J]. Transactions of Materials and Heat Treatment, 35, 111-116(2014).

    [16] Ji Z S, Yuan J J, Zhang M C. High temperature tensile properties of TC4 alloy and its relationship with texture[J]. Transactions of Materials and Heat Treatment, 39, 28-37(2018).

    [17] Hu G X, Cai X, Rong Y H[M]. Fundamentals of materials science, 25(2010).

    [18] Kou S, Kou S[M]. 焊接冶金学, 164(2012).

         [M]. Welding metallurgy, 164(2012).

    [19] Chalmers B. Principles of solidification[M]. //Low W, Schieber M. Applied solid state physics. Boston, MA: Springer, 161-170(1970).

    [20] Hasija V, Ghosh S, Mills M J et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys[J]. Acta Materialia, 51, 4533-4549(2003).

    [21] Liu Z, Zhao Z B, Liu J R et al. Effect of α texture on the tensile deformation behavior of Ti-6Al-4V alloy produced via electron beam rapid manufacturing[J]. Materials Science and Engineering: A, 742, 508-516(2019).

    [22] Shi J, Guo Z X, Sui M L. Slip system determination of dislocations in α-Ti during in situ TEM tensile deformation[J]. Acta Metallurgica Sinica, 52, 71-77(2016).

    [23] Bantounas I, Dye D, Lindley T C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti-6Al-4V[J]. Acta Materialia, 57, 3584-3595(2009).

    Lanyun Qin, Zixin Jin, Shuo Zhao, Jiaqiang Ni, Yanmei Liu, Guang Yang. Effect of α Texture on Mechanical Behavior of TC4 Alloy Fabricated by Laser Deposition Manufacturing[J]. Chinese Journal of Lasers, 2020, 47(1): 0102007
    Download Citation