• Frontiers of Optoelectronics
  • Vol. 13, Issue 3, 246 (2020)
Shuaicheng LU1、2, Chao CHEN1、2、*, and Jiang TANG1、2
Author Affiliations
  • 1Sargent Joint Research Center, Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and
  • 2Electronic Information, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
  • show less
    DOI: 10.1007/s12200-020-1050-y Cite this Article
    Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 246 Copy Citation Text show less
    References

    [1] BP p.l.c. BP Statistical Review of World Energy. UK. 2019, 51

    [2] Fraunhofer Institute for Solar Energy Systems. Photovolatics Report. Germany. 2019, 21–45

    [3] Richter A, Hermle M, Glunz S W. Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE Journal of Photovoltaics, 2013, 3(4): 1184–1191

    [4] NREL. Best Research-Cell Efficiencies. 2020

    [5] Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424

    [6] Reese M O, Glynn S, Kempe M D, McGott D L, Dabney M S, Barnes T M, Booth S, Feldman D, Haegel N M. Increasing markets and decreasing package weight for high-specific-power photovoltaics. Nature Energy, 2018, 3(11): 1002–1012

    [7] Green M A, Dunlop E D, Hohl-Ebinger J, Yoshita M, Kopidakis N, Ho-Baillie AW. Solar cell efficiency tables (Version 55). Progress in Photovoltaics: Research and Applications, 2020, 28(1): 3–15

    [8] Yu Z S, Leilaeioun M, Holman Z. Selecting tandem partners for silicon solar cells. Nature Energy, 2016, 1(11): 16137

    [9] eijtens T, Bush K A, Prasanna R, McGehee M D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nature Energy, 2018, 3(10): 828–838

    [10] Bremner S, Levy M, Honsberg C B. Analysis of tandem solar cell efficiencies under AM1.5G spectrum using a rapid flux calculation method. Progress in Photovoltaics: Research and Applications, 2008, 16(3): 225–233

    [11] Yamaguchi M, Lee K H, Araki K, Kojima N. A review of recent progress in heterogeneous silicon tandem solar cells. Journal of Physics D, Applied Physics, 2018, 51(13): 133002

    [12] White T P, Lal N N, Catchpole K R. Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for>30% efficiency. IEEE Journal of Photovoltaics, 2014, 4(1): 208–214

    [13] Kayes B M, Nie H, Twist R, Spruytte S G, Reinhardt F, Kizilyalli I C, Higashi G S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In: Proceedings of the 37th IEEE Photovoltaic Specialists Conference. Seattle: IEEE, 2011, 000004–000008

    [14] Geisz J F, Steiner MA, Jain N, Schulte K L, France R M, McMahon W E, Perl E E, Friedman D J. Building a six-junction inverted metamorphic concentrator solar cell. IEEE Journal of Photovoltaics, 2018, 8(2): 626–632

    [15] Essig S, Allebé C, Remo T, Geisz J F, Steiner M A, Horowitz K, Barraud L, Ward J S, Schnabel M, Descoeudres A, Young D L, Woodhouse M, Despeisse M, Ballif C, Tamboli A. Raising the onesun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nature Energy, 2017, 2(9): 17144

    [16] Xu J, Boyd C C, Yu Z J, Palmstrom A F, Witter D J, Larson B W, France R M, Werner J, Harvey S P, Wolf E J, Weigand W, Manzoor S, van HestM F AM, Berry J J, Luther JM, Holman Z C, McGehee M D. Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367(6482): 1097–1104

    [17] Jung E H, Jeon N J, Park E Y, Moon C S, Shin T J, Yang T Y, Noh J H, Seo J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature, 2019, 567(7749): 511–515

    [18] Lal N N, Dkhissi Y, Li W, Hou Q, Cheng Y B, Bach U. Perovskite tandem solar cells. Advanced Energy Materials, 2017, 7(18): 1602761

    [19] Grassman T J, Chmielewski D J, Carnevale S D, Carlin J A, Ringel S A. GaAs0.75P0.25/Si dual-junction solar cells grown by MBE and MOCVD. IEEE Journal of Photovoltaics, 2016, 6(1): 326–331

    [20] Tanabe K, Watanabe K, Arakawa Y. III-V/Si hybrid photonic devices by direct fusion bonding. Scientific Reports, 2012, 2(1): 349

    [21] Cariou R, Benick J, Feldmann F, H?hn O, Hauser H, Beutel P, Razek N, Wimplinger M, Bl?si B, Lackner D, Hermle M, Siefer G, Glunz S W, Bett A W, Dimroth F. III–V-on-silicon solar cells reaching 33% photoconversion efficiency in two-terminal configuration. Nature Energy, 2018, 3(4): 326–333

    [22] Feifel M, Lackner D, Ohlmann J, Benick J, Hermle M, Dimroth F. Direct growth of a GaInP/GaAs/Si triple-junction solar cell with 22.3% AM1.5G efficiency. Solar RRL, 2019, 3(12): 1900313

    [23] Hou Y, Aydin E, De Bastiani M, Xiao C, Isikgor F H, Xue D J, Chen B, Chen H, Bahrami B, Chowdhury A H, Johnston A, Baek S W, Huang Z, Wei M, Dong Y, Troughton J, Jalmood R, Mirabelli A J, Allen T G, Van Kerschaver E, Saidaminov M I, Baran D, Qiao Q, Zhu K, De Wolf S, Sargent E H. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367(6482): 1135–1140

    [24] Mazzarella L, Lin Y H, Kirner S, Morales-Vilches A B, Korte L, Albrecht S, Crossland E, Stannowski B, Case C, Snaith H J, Schlatmann R. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Advanced Energy Materials, 2019, 9(14): 1803241

    [25] Sahli F, Werner J, Kamino B A, Br?uninger M, Monnard R, Paviet- Salomon B, Barraud L, Ding L, Diaz Leon J J, Sacchetto D, Cattaneo G, Despeisse M, Boccard M, Nicolay S, Jeangros Q, Niesen B, Ballif C. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials, 2018, 17(9): 820–826

    [26] Jaysankar M, Raul B A, Bastos J, Burgess C, Weijtens C, Creatore M, Aernouts T, Kuang Y, Gehlhaar R, Hadipour A, Poortmans J. Minimizing voltage loss in wide-bandgap perovskites for tandem solar cells. ACS Energy Letters, 2019, 4(1): 259–264

    [27] Carmody M, Mallick S, Margetis J, Kodama R, Biegala T, Xu D, Bechmann P, Garland J, Sivananthan S. Single-crystal II–VI on Si single-junction and tandem solar cells. Applied Physics Letters, 2010, 96(15): 153502

    [28] Sivananthan S, Garland J W, Carmody M W. Multijunction singlecrystal CdTe-based solar cells: opportunities and challenges. In: Proceedings of Energy Harvesting and Storage: Materials, Devices, and Applications. Orlando: SPIE, 2010, 76830N

    [29] Noufi R, Young D L, Coutts T J, Gessert T, Ward J S, Duda A, Wu X, Romero M, Dhere R, Shama J A. Toward a 25%-efficient polycrystalline thin-film tandem solar cell: practical issues. In: Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion. Osaka: IEEE, 2003, 12–14

    [30] Jeong A R, Choi S B, KimWM, Park J K, Choi J, Kim I, Jeong J H. Electrical analysis of c-Si/CGSe monolithic tandem solar cells by using a cell-selective light absorption scheme. Scientific Reports, 2017, 7(1): 15723

    [31] Matsumoto Y, Miyagi K, Takakura H, Okamoto H, Hamakawa Y. a-Si/poly-Si two-and four-terminal tandem type solar cells. In: Proceedings of IEEE Conference on Photovoltaic Specialists. Kissimmee: IEEE, 1990, 1420–1425

    [32] Shen H, Walter D, Wu Y, Fong K C, Jacobs D A, Duong T, Peng J, Weber K, White T P, Catchpole K R. Monolithic perovskite/Si tandem solar cells: pathways to over 30% efficiency. Advanced Energy Materials, 2020, 10(13): 1902840

    [33] Todorov T, Gunawan O, Guha S. A road towards 25% efficiency and beyond: perovskite tandem solar cells. Molecular Systems Design & Engineering, 2016, 1(4): 370–376

    [34] Scheer R, Schock H W. Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices. Weinheim: John Wiley & Sons. 2011, 178

    [35] Bosio A, Rosa G, Romeo N. Past, present and future of the thin film CdTe/CdS solar cells. Solar Energy, 2018, 175: 31–43

    [36] Todorov T K, Bishop DM, Lee Y S. Materials perspectives for nextgeneration low-cost tandem solar cells. Solar Energy Materials and Solar Cells, 2018, 180: 350–357

    [37] Becker J J, Campbell C M, Tsai C, Zhao Y, Lassise M, Zhao X, Boccard M, Holman Z C, Zhang Y. Monocrystalline 1.7-eVbandgap MgCdTe solar cell with 11.2% efficiency. IEEE Journal of Photovoltaics, 2018, 8(2): 581–586

    [38] Swanson D E, Reich C, Abbas A, Shimpi T, Liu H, Ponce F A, Walls J M, Zhang Y H, Metzger W K, Sampath W S, Holman Z C. CdCl2 passivation of polycrystalline CdMgTe and CdZnTe absorbers for tandem photovoltaic cells. Journal of Applied Physics, 2018, 123(20): 203101

    [39] Nakamura M, Yamaguchi K, Kimoto Y, Yasaki Y, Kato T, Sugimoto H. Cd-Free Cu(In,Ga)(Se,S)2 thin-film solar cell with record efficiency of 23.35%. IEEE Journal of Photovoltaics, 2019, 9 (6): 1863–1867

    [40] Jordan D C, Kurtz S R. Photovoltaic degradation rates-an analytical review. Progress in Photovoltaics: Research and Applications, 2013, 21(1): 12–29

    [41] Yi J. New generation multijunction solar cells for achieving high efficiencies. Current Photovoltaic Research, 2018, 6(2): 31–38

    [42] Ishizuka S, Yamada A, Fons P J, Shibata H, Niki S. Impact of a binary Ga2Se3 precursor on ternary CuGaSe2 thin-film and solar cell device properties. Applied Physics Letters, 2013, 103(14): 143903

    [43] Hiroi H, Iwata Y, Adachi S, Sugimoto H, Yamada A. New worldrecord efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE Journal of Photovoltaics, 2016, 6(3): 760–763

    [44] Kondrotas R, Chen C, Tang J. Sb2S3 solar cells. Joule, 2018, 2(5): 857–878

    [45] Sai H, Matsui T, Kumagai H, Matsubara K. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Applied Physics Express, 2018, 11(2): 022301

    [46] Navaraj W T, Yadav B K, Kumar A. Optoelectronic simulation and optimization of unconstrained four terminal amorphous silicon/ crystalline silicon tandem solar cell. Journal of Computational Electronics, 2016, 15(1): 287–294

    [47] Matsui T, Maejima K, Bidiville A, Sai H, Koida T, Suezaki T, Matsumoto M, Saito K, Yoshida I, Kondo M. High-efficiency thinfilm silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design. Japanese Journal of Applied Physics, 2015, 54(8S1): 08KB10

    [48] Tiedje T. Band tail recombination limit to the output voltage of amorphous silicon solar cells. Applied Physics Letters, 1982, 40(7): 627–629

    [49] Rühle S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Solar Energy, 2016, 130: 139–147

    [50] Shockley W, Queisser H. Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 1961, 32(3): 510– 519

    [51] Castro-Hermosa S, Yadav S K, Vesce L, Guidobaldi A, Reale A, Di Carlo A, Brown T M. Stability issues pertaining large area perovskite and dye-sensitized solar cells and modules. Journal of Physics D, Applied Physics, 2017, 50(3): 033001

    [52] Owens C, Ferguson G M, Hermenau M, Voroshazi E, Galagan Y, Zimmermann B, R?sch R, Angmo D, Teran-Escobar G, Uhrich C, Andriessen R, Hoppe H, Würfel U, Lira-Cantu M, Krebs F C, Tanenbaum D M. Comparative indoor and outdoor degradation of organic photovoltaic cells via inter-laboratory collaboration. Polymers, 2015, 8(1): 1

    [53] Choi Y C, Lee D U, Noh J H, Kim E K, Seok S I. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Advanced Functional Materials, 2014, 24(23): 3587–3592

    [54] Todorov T K, Singh S, Bishop D M, Gunawan O, Lee Y S, Gershon T S, Brew K W, Antunez P D, Haight R. Ultrathin high band gap solar cells with improved efficiencies from the world’s oldest photovoltaic material. Nature Communications, 2017, 8(1): 682

    [55] Rickus E. Photovoltaic behaviour of CdSe thin film solar cells. In: Proceedings of the 4th EC Photovoltaic Solar Energy Conference. Dordrecht: Springer, 1982, 831–835

    [56] Minami T, Nishi Y, Miyata T. Efficiency enhancement using a Zn1 – xGex-O thin film as an n-type window layer in Cu2O-based heterojunction solar cells. Applied Physics Express, 2016, 9(5): 052301

    [57] Wong L H, Zakutayev A, Major J D, Hao X,Walsh A, Todorov T K, Saucedo E. Emerging inorganic solar cell efficiency tables (Version 1). Journal of Physics: Energy, 2019, 1(3): 032001

    [58] Minami T, Nishi Y, Miyata T. High-efficiency Cu2O-based heterojunction solar cells fabricated using a Ga2O3 thin film as ntype layer. Applied Physics Express, 2013, 6(4): 044101

    [59] Lei H, Chen J, Tan Z, Fang G. Review of recent progress in antimony chalcogenide-based solar cells: materials and devices. Solar RRL, 2019, 3(6): 1900026

    [60] Mavlonov A, Razykov T, Raziq F, Gan J, Chantana J, Kawano Y, Nishimura T,Wei H, Zakutayev A, Minemoto T, Zu X, Li S, Qiao L. A review of Sb2Se3 photovoltaic absorber materials and thin-film solar cells. Solar Energy, 2020, 201: 227–246

    [61] Han J, Wang S, Yang J, Guo S, Cao Q, Tang H, Pu X, Gao B, Li X. Solution-processed Sb2S3 planar thin film solar cells with a conversion efficiency of 6.9% at an open circuit voltage of 0.7 V achieved via surface passivation by a SbCl3 interface layer. ACS Applied Materials & Interfaces, 2020, 12(4): 4970–4979

    [62] Jiang C H, Tang R F,Wang X M, Ju H X, Chen G L, Chen T. Alkali metals doping for high-performance planar heterojunction Sb2S3 solar cells. Solar RRL, 2019, 3(1): 1800272

    [63] Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J. Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2 (4): 17046

    [64] Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries. Nature Photonics, 2015, 9(6): 409–415

    [65] Deng H, Zeng Y, Ishaq M, Yuan S, Zhang H, Yang X, Hou M, Farooq U, Huang J, Sun K,Webster R,Wu H, Chen Z, Yi F, Song H, Hao X, Tang J. Quasiepitaxy strategy for efficient full-inorganic Sb2S3 solar cells. Advanced Functional Materials, 2019, 29(31): 1901720

    [66] Cao Y, Zhu X, Jiang J, Liu C, Zhou J, Ni J, Zhang J, Pang J. Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices. Solar Energy Materials and Solar Cells, 2020, 206: 110279

    [67] Zhang J, Lian W, Yin Y, Wang X, Tang R, Qian C, Hao X, Zhu C, Chen T. All antimony chalcogenide tandem solar cell. Solar RRL, 2020, 4(4): 2000048

    [68] Zhu M, Niu G, Tang J. Elemental Se: fundamentals and its optoelectronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2019, 7(8): 2199– 2206

    [69] Hadar I, Hu X, Luo Z Z, Dravid V P, Kanatzidis M G. Nonlinear band gap tunability in selenium tellurium alloys and its utilization in solar cells. ACS Energy Letters, 2019, 4(9): 2137–2143

    [70] Bagheri B, Kottokkaran R, Poly L P, Sharikadze S, Reichert B, Noack M, Dalal V. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation. In: Proceedings of the 46th IEEE Photovoltaic Specialists Conference (PVSC). Chicago: IEEE, 2019, 1822–1825

    [71] Mahawela P, Jeedigunta S, Vakkalanka S, Ferekides C S, Morel D L. Transparent high-performance CDSE thin-film solar cells. Thin Solid Films, 2005, 480–481: 466–470

    [72] Patel N G, Panchal C J, Makhija K K, Patel P G, Patel S S. Fabrication and characterization of ZnTe/CdSe thin film solar cells. Crystal Research and Technology, 1994, 29(2): 247–252

    [73] Shenouda A Y, El Sayed E S M. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe. Ain Shams Engineering Journal, 2015, 6(1): 341–346

    [74] Murray C B, Norris D J, Bawendi M G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 1993, 115(19): 8706–8715

    [75] Frese K W Jr. A high-efficiency single-crystal cdse photoelectrochemical solar-cell and an associated loss mechanism. Applied Physics Letters, 1982, 40(3): 275–277

    [76] Giraldo S, Jehl Z, Placidi M, Izquierdo-Roca V, Pérez-Rodríguez A, Saucedo E. Progress and perspectives of thin film kesterite photovoltaic technology: a critical review. Advanced Materials, 2019, 31(16): 1806692

    [77] Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee SW, Gordon R G, Buonassisi T. Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells. Advanced Materials, 2014, 26(27): 4704–4710

    [78] Eisermann S, Kronenberger A, Laufer A, Bieber J, Haas G, Lautenschl?ger S, Homm G, Klar P J, Meyer B K. Copper oxide thin films by chemical vapor deposition: Synthesis, characterization and electrical properties. Physica Status Solidi (a), 2012, 209(3): 531– 536

    [79] Lee Y S, Heo J, Siah S C, Mailoa J P, Brandt R E, Kim S B, Gordon R G, Buonassisi T. Ultrathin amorphous zinc-tin-oxide buffer layer for enhancing heterojunction interface quality in metal-oxide solar cells. Energy & Environmental Science, 2013, 6(7): 2112–2118

    Shuaicheng LU, Chao CHEN, Jiang TANG. Possible top cells for next-generation Si-based tandem solar cells[J]. Frontiers of Optoelectronics, 2020, 13(3): 246
    Download Citation