• Chinese Journal of Lasers
  • Vol. 49, Issue 15, 1507402 (2022)
Fei Hu1、2、4、5, Yanfei Liu1、2、4、5, Xichen Li1、2、4、5, Minghang Cao1、2、4、5, Niancai Peng1、2、4、5、*, and Zhenxi Zhang3、4、5
Author Affiliations
  • 1State Key Laboratory of Mechanical Manufacturing System Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 2School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 3School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • 4Xi’an Key Laboratory of Biomedical Testing and High-End Equipment, Xi’an 710049, Shaanxi, China
  • 5Shaanxi Province Life Science Testing Instrument Engineering Technology Research Center, Xi’an 710049, Shaanxi, China
  • show less
    DOI: 10.3788/CJL202249.1507402 Cite this Article Set citation alerts
    Fei Hu, Yanfei Liu, Xichen Li, Minghang Cao, Niancai Peng, Zhenxi Zhang. Convenient Nucleic Acid Detection Method and Point-of-Care Detection Device Based on CRISPR/Cas12a Molecular Diagnosis[J]. Chinese Journal of Lasers, 2022, 49(15): 1507402 Copy Citation Text show less
    Flow chart of a convenient nucleic acid detection method based on CRISPR/Cas12a
    Fig. 1. Flow chart of a convenient nucleic acid detection method based on CRISPR/Cas12a
    Schematics of instrument structure. (a) Physical map of experimental instrument; (b) schematic of overall structure of testing instrument; (c) schematic of optical cassette structure; (d) schematic of instrument base structure
    Fig. 2. Schematics of instrument structure. (a) Physical map of experimental instrument; (b) schematic of overall structure of testing instrument; (c) schematic of optical cassette structure; (d) schematic of instrument base structure
    Optical inspection in minimalist mode. (a) Workflow chart of nucleic acid detection APP; (b) real-time fluorescent CRISPR reaction time; (c) positive result showed by nucleic acid detection APP; (d) negative result showed by nucleic acid detection APP
    Fig. 3. Optical inspection in minimalist mode. (a) Workflow chart of nucleic acid detection APP; (b) real-time fluorescent CRISPR reaction time; (c) positive result showed by nucleic acid detection APP; (d) negative result showed by nucleic acid detection APP
    Schematics of optical circuit. (a) Schematic of fluorescence recognition circuit for small portable device; (b) schematic of coaxial optical fiber detection principle
    Fig. 4. Schematics of optical circuit. (a) Schematic of fluorescence recognition circuit for small portable device; (b) schematic of coaxial optical fiber detection principle
    Experimental detection limit in minimalist mode. (a) Results showed by nucleic acid detection APP; (b) fluorescence data analysis diagram
    Fig. 5. Experimental detection limit in minimalist mode. (a) Results showed by nucleic acid detection APP; (b) fluorescence data analysis diagram
    Specific analysis (data represented as the mean ± standard deviation of three experimental replicates). (a) Specific analysis of different virus; (b) base mismatch specificity analysis
    Fig. 6. Specific analysis (data represented as the mean ± standard deviation of three experimental replicates). (a) Specific analysis of different virus; (b) base mismatch specificity analysis
    Detection results comparison between our method and PCR method ( negative reaction time is replaced by 0 min)
    Fig. 7. Detection results comparison between our method and PCR method ( negative reaction time is replaced by 0 min)
    NameSequence (5′-3′)
    Universal RPA forward primer (SARS-CoV-2)AGGCAGCAGTAGGGGAACTTCTCCTGCTAGAAT
    Universal RPA reverse primer (SARS-CoV-2)TTGGCCTTTACCAGACATTTTGCTCTCAAGCTG
    Universal PCR forward primer (SARS-CoV-2)TTACAAACATTGGCCGCAAA
    Universal PCR reverse primer (SARS-CoV-2)GCGCGACATTCCGAAGAA
    Universal PCR Probe (SARS-CoV-2)FAM-ACAATTTGCCCCCAGCGCTTCAG-BHQ
    (SARS-CoV-2) crRNAUAAUUUCUACUAAGUGUAGAUCUGCUGCUUGACAGAUUGAAC
    Table 1. Sequence information of DNA oligonucleotides and crRNA
    NameSequence (5′-3′)
    SARS-CoV-2 sequenceCAGGCAGCAGTAGGGGAACTTCTCCTGCTAGAATG
    GCTGGCAATGGCGGTGATGCTGCTCTTGCTTTGCTGCTGCTTGACAGAT
    TGAACCAGCTTGAGAGCAAAATGTCTGGTAAAGGCCAACA
    RNA1 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCAAGACAGAT TGAACCAG…GTAAAGGCCAACA
    RNA2 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTACAGAT TGAACCAG…GTAAAGGCCAACA
    RNA2 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTGACCGAT TGAACCAG…GTAAAGGCCAACA
    RNA3 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTGACTGT CTGAACCAG…GTAAAGGCCAACA
    RNA4 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTGACAGATAC TGAACCAG…GTAAAGGCCAACA
    RNA5 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTAACAGAT TGAACCAG
    RNA6 mismatchCAGGCAGCAGTAGG…CTTTGCTGCTGCTTGACTTGAT TGAACCAG…GTAAAGGCCAACA
    Table 2. Sequence information of nucleic acid mismatch
    Fei Hu, Yanfei Liu, Xichen Li, Minghang Cao, Niancai Peng, Zhenxi Zhang. Convenient Nucleic Acid Detection Method and Point-of-Care Detection Device Based on CRISPR/Cas12a Molecular Diagnosis[J]. Chinese Journal of Lasers, 2022, 49(15): 1507402
    Download Citation