• Photonics Research
  • Vol. 12, Issue 8, 1654 (2024)
Dexiang Zhu1,2,3, Zhouyuanhang Wang1,2,3, Xiangyu Xu1,2,3, Wenyu Du1,2,3..., Wei Huang1,2,3, Yan Kuai1,2,3, Benli Yu1,2,3, Jianzhong Zheng4, Zhijia Hu1,2,3,5,* and Siqi Li1,2,3,6,*|Show fewer author(s)
Author Affiliations
  • 1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Hefei 230601, China
  • 2School of Physics and Optoelectronic Engineering, Anhui University, Hefei 230601, China
  • 3Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, Hefei 230601, China
  • 4School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
  • 5e-mail: zhijiahu@ahu.edu.cn
  • 6e-mail: sqli@ahu.edu.cn
  • show less
    DOI: 10.1364/PRJ.520965 Cite this Article Set citation alerts
    Dexiang Zhu, Zhouyuanhang Wang, Xiangyu Xu, Wenyu Du, Wei Huang, Yan Kuai, Benli Yu, Jianzhong Zheng, Zhijia Hu, Siqi Li, "Circularly polarized lasing from chiral metal-organic frameworks," Photonics Res. 12, 1654 (2024) Copy Citation Text show less
    References

    [1] C. L. Hao, L. G. Xu, H. Kuang. Artificial chiral probes and bioapplications. Adv. Mater., 32, 1802075(2020).

    [2] Y. Chen, G. B. Craven, R. A. Kamber. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat. Chem., 15, 1616-1625(2023).

    [3] M. Y. Chen, C. X. Qi, Y. T. Yin. Enantioselective determination of chiral acids and amino acids by chiral receptors with aggregation-induced emissions. Org. Chem. Front., 9, 5160-5167(2022).

    [4] X. Q. Zhan, F. F. Xu, Z. H. Zhou. 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays. Adv. Mater., 33, 2104418(2021).

    [5] Y. Yang, R. C. da Costa, D. M. Smilgies. Induction of circularly polarized electroluminescence from an achiral light-emitting polymer via a chiral small-molecule dopant. Adv. Mater., 25, 2624-2628(2013).

    [6] M. Li, S. H. Li, D. D. Zhang. Stable enantiomers displaying thermally activated delayed fluorescence: efficient OLEDs with circularly polarized electroluminescence. Angew. Chem. Int. Ed., 57, 2889-2893(2018).

    [7] M. Zhang, Q. Guo, Z. Li. Processable circularly polarized luminescence material enables flexible stereoscopic 3D imaging. Sci. Adv., 9, eadi9944(2023).

    [8] Y. Z. Dong, Y. P. Zhang, X. Y. Li. Chiral perovskites: promising materials toward next-generation optoelectronics. Small, 15, 1902237(2019).

    [9] J. Y. Wang, H. P. Lu, X. Pan. Spin-dependent photovoltaic and photogalvanic responses of optoelectronic devices based on chiral two-dimensional hybrid organic-inorganic perovskites. ACS Nano, 15, 588-595(2021).

    [10] J. M. Han, S. Guo, H. Lu. Recent progress on circularly polarized luminescent materials for organic optoelectronic devices. Adv. Opt. Mater., 6, 1800538(2018).

    [11] L. Wan, Y. Z. Liu, M. J. Fuchter. Anomalous circularly polarized light emission in organic light-emitting diodes caused by orbital-momentum locking. Nat. Photonics, 17, 193-199(2023).

    [12] X. Jin, Y. T. Sang, Y. H. Shi. Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization. ACS Nano, 13, 2804-2811(2019).

    [13] C. L. He, Z. Y. Feng, Y. Li. Improved enantioselectivity in thiol-ene photopolymerization of sulphur-containing polymers with circularly polarized luminescence. Polym. Chem., 12, 2433-2438(2021).

    [14] E. M. Sherbrook, M. J. Genzink, B. Park. Chiral Bronsted acid-controlled intermolecular asymmetric [2+2] photocycloadditions. Nat. Commun., 12, 5735(2021).

    [15] K. Mishra, D. Guyon, J. S. Martin. Chiral perovskite nanocrystals for asymmetric reactions: a highly enantioselective strategy for photocatalytic synthesis of N-C axially chiral heterocycles. J. Am. Chem. Soc., 145, 17242-17252(2023).

    [16] C. L. Hao, X. L. Wu, M. Z. Sun. Chiral core-shell upconversion nanoparticle@MOF nanoassemblies for quantification and bioimaging of reactive oxygen species in vivo. J. Am. Chem. Soc., 141, 19373-19378(2019).

    [17] Y. R. Liu, Z. L. Wu, D. W. Armstrong. Detection and analysis of chiral molecules as disease biomarkers. Nat. Rev. Chem., 7, 355-373(2023).

    [18] Q. Ding, J. Zhao, H. Y. Zhang. Enantiomeric NIR-II emitting rare-earth-doped Ag2Se nanoparticles with differentiated in vivo imaging efficiencies. Angew. Chem. Int. Ed., 61, e202210370(2022).

    [19] S. Xiao, S. Y. Wu, X. Xie. Chiral photonic circuits for deterministic spin transfer. Laser Photonics Rev., 15, 2100009(2021).

    [20] Y. H. Lee, Y. Won, J. Mun. Hierarchically manufactured chiral plasmonic nanostructures with gigantic chirality for polarized emission and information encryption. Nat. Commun., 14, 7298(2023).

    [21] P. Lodahl, S. Mahmoodian, S. Stobbe. Chiral quantum optics. Nature, 541, 473-480(2017).

    [22] Z. Y. Yuan, Y. K. Zhou, Z. Qiao. Stimulated chiral light-matter interactions in biological microlasers. ACS Nano, 15, 8965-8975(2021).

    [23] X. D. Zhang, Y. L. Liu, J. C. Han. Chiral emission from resonant metasurfaces. Science, 377, 1215-1218(2022).

    [24] J. Troyano, A. Carne-Sanchez, C. Avci. Colloidal metal-organic framework particles: the pioneering case of ZIF-8. Chem. Soc. Rev., 48, 5534-5546(2019).

    [25] Y. C. Pan, D. Heryadi, F. Zhou. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. Crystengcomm, 13, 6937-6940(2011).

    [26] K. C. Wang, Y. P. Li, L. H. Xie. Construction and application of base-stable MOFs: a critical review. Chem. Soc. Rev., 51, 6417-6441(2022).

    [27] Y. C. Lv, Z. L. Xiong, H. Y. Dong. Pure metal-organic framework microlasers with controlled cavity shapes. Nano Lett., 20, 2020-2025(2020).

    [28] H. F. Li, H. H. Shi, X. Y. Chen. Construction of metal-organic framework films via crosslinking-induced assembly. Adv. Mater., 35, 2209777(2023).

    [29] M. Kazem-Rostami, A. Orte, A. M. Ortuño. Helically chiral hybrid cyclodextrin metal-organic framework exhibiting circularly polarized luminescence. J. Am. Chem. Soc., 144, 9380-9389(2022).

    [30] P. F. Gao, Y. Y. Jiang, H. Liu. Pillar-layer chiral MOFs as a crystalline platform for circularly polarized luminescence and single-phase white-light emission. ACS Appl. Mater. Interfaces, 14, 16435-16444(2022).

    [31] P. F. Gao, K. Zhang, D. D. Ren. Host-guest chemistry of chiral MOFs for multicolor circularly polarized luminescence including room temperature phosphorescence. Adv. Funct. Mater, 33, 2300105(2023).

    [32] Y. H. Xiao, Z. Z. Ma, X. X. Yang. Inducing circularly polarized luminescence by confined synthesis of ultrasmall chiral carbon nanodot arrays in pyrene-based MOF thin film. ACS Nano, 17, 19136-19143(2023).

    [33] W. L. Shang, X. F. Zhu, T. L. Liang. Chiral reticular self-assembly of achiral AIEgen into optically pure metal-organic frameworks (MOFs) with dual mechano-switchable circularly polarized luminescence. Angew. Chem. Int. Ed., 59, 12811-12816(2020).

    [34] J. Y. Wang, Y. B. Si, X. M. Luo. Stepwise amplification of circularly polarized luminescence in chiral metal cluster ensembles. Adv. Sci., 10, 2207660(2023).

    [35] T. H. Zhao, J. L. Han, X. Jin. Enhanced circularly polarized luminescence from reorganized chiral emitters on the skeleton of a zeolitic imidazolate framework. Angew. Chem. Int. Ed., 58, 4978-4982(2019).

    [36] C. Zhang, Z. P. Yan, X. Y. Dong. Enantiomeric MOF crystals using helical channels as palettes with bright white circularly polarized luminescence. Adv. Mater., 32, 2002914(2020).

    [37] T. H. Zhao, J. L. Han, X. Jin. Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks. Research, 2020, 6452123(2020).

    [38] J. S. Zhao, H. W. Li, Y. Z. Han. Chirality from substitution: enantiomer separation via a modified metal-organic framework. J. Mater. Chem. A, 3, 12145-12148(2015).

    [39] H. Gao, P. G. Chen, T. W. Lo. Selective excitation of polarization-steered chiral photoluminescence in single plasmonic nanohelicoids. Adv. Funct. Mater., 31, 2101502(2021).

    [40] A. A. Rafati, E. Ghasemian, H. Iloukhani. Surface tension and surface properties of binary mixtures of 1,4-dioxane or N, N-dimethyl formamide with n-Alkyl acetates. J. Chem. Eng. Date, 54, 3224-3228(2009).

    [41] S. Yoo, Q. H. Park. Chiral light-matter interaction in optical resonators. Phys. Rev. Lett., 114, 203003(2015).

    [42] J. Gautier, M. H. Li, T. W. Ebbesen. Planar chirality and optical spin-orbit coupling for chiral Fabry-Perot cavities. ACS Photonics, 9, 778-783(2022).

    [43] K. Voronin, A. S. Taradin, M. V. Gorkunov. Single-handedness chiral optical cavities. ACS Photonics, 9, 2652-2659(2022).

    Dexiang Zhu, Zhouyuanhang Wang, Xiangyu Xu, Wenyu Du, Wei Huang, Yan Kuai, Benli Yu, Jianzhong Zheng, Zhijia Hu, Siqi Li, "Circularly polarized lasing from chiral metal-organic frameworks," Photonics Res. 12, 1654 (2024)
    Download Citation