• Photonics Research
  • Vol. 10, Issue 2, 503 (2022)
Xinxin Jin1、2、†, Wenli Bao3、†, Han Zhang3, Zheng Zheng1, and Meng Zhang1、*
Author Affiliations
  • 1School of Electronic and Information Engineering, Beihang University, Beijing 100191, China
  • 2College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China
  • 3International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/PRJ.444938 Cite this Article Set citation alerts
    Xinxin Jin, Wenli Bao, Han Zhang, Zheng Zheng, Meng Zhang. Four-wave mixing in graphdiyne-microfiber based on synchronized dual-wavelength pulses[J]. Photonics Research, 2022, 10(2): 503 Copy Citation Text show less
    References

    [1] G. X. Li, Y. L. Li, H. B. Liu, Y. B. Guo, Y. J. Li, D. B. Zhu. Architecture of graphdiyne nanoscale films. Chem. Commun., 46, 3256-3258(2010).

    [2] Z. C. Zuo, H. Shang, Y. H. Chen, J. F. Li, H. B. Liu, Y. J. Li, Y. L. Li. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun., 53, 8074-8077(2017).

    [3] J. M. Liu, C. Y. Chen, Y. L. Zhao. Progress and prospects of graphdiyne-based materials in biomedical applications. Adv. Mater., 31, 1804386(2019).

    [4] J. Q. Li, J. Xu, Z. Q. Xie, X. Gao, J. Y. Zhou, Y. Xiong, C. G. Chen, J. Zhang, Z. F. Liu. Diatomite-templated synthesis of freestanding 3D graphdiyne for energy storage and catalysis application. Adv. Mater., 30, 1800548(2018).

    [5] Z. W. Jin, Q. Zhou, Y. H. Chen, P. Mao, H. Li, H. B. Liu, J. Z. Wang, Y. L. Li. Graphdiyne:ZnO nanocomposites for high-performance UV photodetectors. Adv. Mater., 28, 3697-3702(2016).

    [6] Y. Zhang, P. Huang, J. Guo, R. C. Shi, W. C. Huang, Z. Shi, L. M. Wu, F. Zhang, L. F. Gao, C. Li, X. W. Zhang, J. L. Xu, H. Zhang. Graphdiyne-based flexible photodetectors with high responsivity and detectivity. Adv. Mater., 32, 2001082(2020).

    [7] M. Q. Long, L. Tang, D. Wang, Y. L. Li, Z. G. Shuai. Electronic structure and carrier mobility in graphdiyne sheet and nanoribbons: theoretical predictions. ACS Nano, 5, 2593-2600(2011).

    [8] G. van Miert, V. Juricic, C. M. Smith. Tight-binding theory of spin-orbit coupling in graphynes. Phys. Rev. B, 90, 195414(2014).

    [9] Y. J. Li, L. Xu, H. B. Liu, Y. L. Li. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev., 43, 2572-2586(2014).

    [10] L. M. Wu, Y. Z. Dong, J. L. Zhao, D. T. Ma, W. C. Huang, Y. Zhang, Y. Z. Wang, X. T. Jiang, Y. J. Xiang, J. Q. Li, Y. Q. Feng, J. L. Xu, H. Zhang. Kerr nonlinearity in 2D graphdiyne for passive photonic diodes. Adv. Mater., 31, 1807981(2019).

    [11] J. Guo, R. C. Shi, R. Wang, Y. Z. Wang, F. Zhang, C. Wang, H. L. Chen, C. Y. Ma, Z. H. Wang, Y. Q. Ge, Y. F. Song, Z. Q. Luo, D. Y. Fan, X. T. Jiang, J. L. Xu, H. Zhang. Graphdiyne-polymer nanocomposite as a broadband and robust saturable absorber for ultrafast photonics. Laser Photon. Rev., 14, 1900367(2020).

    [12] J. Guo, Z. H. Wang, R. C. Shi, Y. Zhang, Z. W. He, L. F. Gao, R. Wang, Y. Q. Shu, C. Y. Ma, Y. Q. Ge, Y. F. Song, D. Y. Fan, J. L. Xu, H. Zhang. Graphdiyne as a promising mid-infrared nonlinear optical material for ultrafast photonics. Adv. Opt. Mater., 8, 2000067(2020).

    [13] R. I. Woodward, E. J. R. Kelleher. 2D saturable absorbers for fibre lasers. Appl. Sci., 5, 1440-1456(2015).

    [14] M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, H. Zhang. 2D black phosphorus saturable absorbers for ultrafast photonics. Adv. Opt. Mater., 7, 1800224(2019).

    [15] Q. Q. Hao, J. Guo, L. Y. Yin, T. Y. Ning, Y. Q. Ge, J. Liu. Watt-level ultrafast bulk laser with a graphdiyne saturable absorber mirror. Opt. Lett., 45, 5554-5557(2020).

    [16] J. Feng, X. Li, Z. Shi, C. Zheng, X. Li, D. Leng, Y. Wang, J. Liu, L. Zhu. 2D ductile transition metal chalcogenides (TMCs): novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater., 8, 1901762(2020).

    [17] J. Feng, X. Li, G. Zhu, Q. J. Wang. Emerging high-performance SnS/CdS nanoflower heterojunction for ultrafast photonics. ACS Appl. Mater. Interfaces, 12, 43098-43105(2020).

    [18] X. Li, J. Feng, W. Mao, F. Yin, J. Jiang. Emerging uniform Cu2O nanocubes for 251st harmonic ultrashort pulse generation. J. Mater. Chem. C, 8, 14386-14392(2020).

    [19] J.-S. Liu, X.-H. Li, Y.-X. Guo, A. Qyyum, Z.-J. Shi, T.-C. Feng, Y. Zhang, C.-X. Jiang, X.-F. Liu. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 15, 1902811(2019).

    [20] Y. Zhao, W. Wang, X. Li, H. Lu, Z. Shi, Y. Wang, C. Zhang, J. Hu, G. Shan. Functional porous MOF-derived CuO octahedra for harmonic soliton molecule pulses generation. ACS Photon., 7, 2440-2447(2020).

    [21] Y. Zhao, P. Guo, X. Li, Z. Jin. Ultrafast photonics application of graphdiyne in the optical communication region. Carbon, 149, 336-341(2019).

    [22] G. Agrawal, G. Agrawal. Chapter 10—four-wave mixing. Nonlinear Fiber Optics, 397-456(2013).

    [23] H. Zhang, S. Virally, Q. L. Bao, L. K. Ping, S. Massar, N. Godbout, P. Kockaert. Z-scan measurement of the nonlinear refractive index of graphene. Opt. Lett., 37, 1856-1858(2012).

    [24] Y. F. Song, Y. X. Chen, X. T. Jiang, W. Y. Liang, K. Wang, Z. M. Liang, Y. Q. Ge, F. Zhang, L. M. Wu, J. L. Zheng, J. H. Ji, H. Zhang. Nonlinear few-layer antimonene-based all-optical signal processing: ultrafast optical switching and high-speed wavelength conversion. Adv. Opt. Mater., 6, 1701287(2018).

    [25] Y. Wu, Q. Wu, F. Sun, C. Cheng, S. Meng, J. Zhao. Emergence of electron coherence and two-color all-optical switching in MoS2 based on spatial self-phase modulation. Proc. Natl. Acad. Sci. USA, 112, 11800-11805(2015).

    [26] S. Uddin, P. C. Debnath, K. Park, Y. W. Song. Nonlinear black phosphorus for ultrafast optical switching. Sci. Rep., 7, 43371(2017).

    [27] J. L. Zheng, Z. H. Yang, C. Si, Z. M. Liang, X. Chen, R. Cao, Z. N. Guo, K. Wang, Y. Zhang, J. H. Ji, M. Zhang, D. Y. Fan, H. Zhang. Black phosphorus based all-optical-signal-processing: toward high performances and enhanced stability. ACS Photon., 4, 1466-1476(2017).

    [28] P. C. Debnath, S. Uddin, Y. W. Song. Ultrafast all-optical switching incorporating in situ graphene grown along an optical fiber by the evanescent field of a laser. ACS Photon., 5, 445-455(2018).

    [29] Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, X. Y. Zhou, B. J. Wu, K. S. Chiang. Four-wave mixing in a microfiber attached onto a graphene film. IEEE Photon. Technol. Lett., 26, 249-252(2014).

    [30] M. M. Haley, S. C. Brand, J. J. Pak. Carbon networks based on dehydrobenzoannulenes: synthesis of graphdiyne substructures. Angew. Chem. Int. Ed., 36, 836-838(1997).

    [31] J. D. Zhang, X. F. Yu, W. J. Han, B. S. Lv, X. H. Li, S. Xiao, Y. L. Gao, J. He. Broadband spatial self-phase modulation of black phosphorous. Opt. Lett., 41, 1704-1707(2016).

    [32] X. X. Jin, G. H. Hu, M. Zhang, T. Albrow-Owen, Z. Zheng, T. Hasan. Environmentally stable black phosphorus saturable absorber for ultrafast laser. Nanophotonics, 9, 2445-2449(2020).

    [33] X. X. Jin, G. H. Hu, M. Zhang, Y. W. Hu, T. Albrow-Owen, R. C. T. Howe, T. C. Wu, Q. Wu, Z. Zheng, T. Hasan. 102 fs pulse generation from a long-term stable, inkjet-printed black phosphorus-mode-locked fiber laser. Opt. Express, 26, 12506-12513(2018).

    [34] G. H. Hu, L. S. Yang, Z. Y. Yang, Y. B. Wang, X. X. Jin, J. Dai, Q. Wu, S. H. Liu, X. X. Zhu, X. S. Wang, T. C. Wu, R. C. T. Howe, T. Albrow-Owen, L. W. T. Ng, Q. Yang, L. G. Occhipinti, R. I. Woodward, E. J. R. Kelleher, Z. P. Sun, X. Huang, M. Zhang, C. D. Bain, T. Hasan. A general ink formulation of 2D crystals for wafer-scale inkjet printing. Sci. Adv., 6, eaba5029(2020).

    [35] D. K. Sang, H. Wang, Z. Guo, N. Xie, H. Zhang. Recent developments in stability and passivation techniques of phosphorene toward next-generation device applications. Adv. Funct. Mater., 29, 1903419(2019).

    [36] K. K. Chow, S. Yamashita. Four-wave mixing in a single-walled carbon-nanotube-deposited D-shaped fiber and its application in tunable wavelength conversion. Opt. Express, 17, 15608-15613(2009).

    [37] M. Zhang, E. J. R. Kelleher, A. S. Pozharov, E. D. Obraztsova, S. V. Popov, J. R. Taylor. Passive synchronization of all-fiber lasers through a common saturable absorber. Opt. Lett., 36, 3984-3986(2011).

    [38] J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, K. M. Abramski. Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber. Opt. Express, 22, 5536-5543(2014).

    [39] D. Yoshitomi, K. Torizuka. Long-term stable passive synchronization between two-color mode-locked lasers with the aid of temperature stabilization. Opt. Express, 22, 4091-4097(2014).

    [40] N. Shibata, R. Braun, R. Waarts. Phase-mismatch dependence of efficiency of wave generation through four-wave mixing in a single-mode optical fiber. IEEE J. Quantum Electron., 23, 1205-1210(1987).

    [41] K. K. Chow, M. Tsuji, S. Yamashita. Single-walled carbon-nanotube-deposited tapered fiber for four-wave mixing based wavelength conversion. Appl. Phys. Lett., 96, 061104(2010).

    Xinxin Jin, Wenli Bao, Han Zhang, Zheng Zheng, Meng Zhang. Four-wave mixing in graphdiyne-microfiber based on synchronized dual-wavelength pulses[J]. Photonics Research, 2022, 10(2): 503
    Download Citation