[4] LONG J, SHELHAMER E, DARRELL T.Fully convolutional networks for semantic segmentation [J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
[5] RONNEBERGER O, FISCHER P, BROX T.U-Net:convolutional networks for biomedical image segmentation [C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Bern:Springer, 2015:234-241.
[10] SZEGEDY C, VANHOUCK V, IOFFE S, et al.Rethinking the inception architecture for computer vision [C]//IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas, NV:IEEE, 2016:2818-2826.
[11] WANG Q L, WU B G, ZHU P F, et al.ECA-Net:efficient channel attention for deep convolutional neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Seattle, WA:IEEE, 2020.doi:10.1109/CVPR42600.2020.01155.
[16] LI X, WANG W H, HU X L, et al.Selective kernel networks[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Long Beach, CA:IEEE, 2020.doi:10.1109/CVPR.2019.00060.
[17] ZHONG Z L, LIN Z Q, BIDART R, et al.Squeeze-and-attention networks for semantic segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).Seattle, WA:IEEE, 2020.doi:10.1109/CVPR42600.2020.01308.
[18] SONG K, YANG G W, WANG Q X, et al.Deep learning prediction of incoming rainfalls:an operational service for the city of Beijing China[C]//International Conference on Data Mining Workshops (ICDMW).Beijing:IEEE, 2019.doi:10.1109/ICDMW.2019.00036.