[1] LIU J T, ZHAO L, JIA G Y, et al. Preparation of resin coated alumina aggregate and its effect on the properties of alumina-spinel castables for purging plugs[J]. Ceramics International, 2022, 48(23): 35398-35405.
[2] YANG M Y, XIAO G Q, DING D H, et al. Enhanced performance of ultra-low carbon MgO-C bricks by the addition of special C/MgAl2O4 composite powders[J]. Ceramics International, 2022, 48(17): 24411-24420.
[3] CALVO W A, PENA P, TOMBA MARTINEZ A G. Post-mortem analysis of alumina-magnesia-carbon refractory bricks used in steelmaking ladles[J]. Ceramics International, 2019, 45(1): 185-196.
[4] RESENDE W S, STOLL R M, JUSTUS S M, et al. Key features of alumina/magnesia/graphite refractories for steel ladle lining[J]. Journal of the European Ceramic Society, 2000, 20(9): 1419-1427.
[6] CHEN Z, YAN W, SCHAFFNER S, et al. Microstructure and mechanical properties of lightweight Al2O3-C refractories using different carbon sources[J]. Journal of Alloys and Compounds, 2021, 862: 158036.
[7] FU L P, GU H Z, HUANG A, et al. Design, fabrication and properties of lightweight wear lining refractories: a review[J]. Journal of the European Ceramic Society, 2022, 42(3): 744-763.
[11] LIU X Y, CHEN Z, YAN W, et al. A comparative study on lightweight and dense periclase-magnesium aluminate spinel refractories from industrial preparation[J]. Journal of Alloys and Compounds, 2023, 960: 170611.
[13] XIAO G Q, CHEN J J, DING D H, et al. Enhanced thermal shock resistance of hydratable magnesium carboxylate bonded castables via in situ formation of micro-sized spinel[J]. Ceramics International, 2021, 47(20): 29423-29434.
[14] ZHAO Z Q, ZHOU W Y, GUO L, et al. Effect of magnesium aluminum hydrotalcite on the properties of CAC-bonded castables[J]. Ceramics International, 2023, 49(3): 5382-5390.
[15] PAN L P, LI Y W, TAN F G, et al. Influence of calcium hexaluminate gradation on interfacial microstructure and fracture behavior of cement-bonded alumina castables[J]. Ceramics International, 2023, 49(10): 16137-16148.
[16] LUO J Y, DING D H, XIAO G Q. Enhanced thermal shock resistance of low-carbon Al2O3-C refractories by aggregate/matrix interface design with MgAl2O4/CNTs layer[J]. Ceramics International, 2024, 50(8): 13550-13561.
[17] LUO J Y, JIN S L, CHONG X C, et al. Brittleness reduction of low-carbon Al2O3-C refractories with in situ formation MgAl2O4/CNTs layer between aggregate and matrix[J]. Journal of the European Ceramic Society, 2024, 44(4): 2620-2629.
[18] CHEN Q L, LI T Q, GAO J, et al. Improved comprehensive properties of Al2O3-MgO-C refractories containing lightweight tabular alumina aggregates[J]. Ceramics International, 2023, 49(11): 17818-17826.
[19] REN X M, MA B Y, LIU H, et al. Designing low-carbon MgO-Al2O3-La2O3-C refractories with balanced performance for ladle furnaces[J]. Journal of the European Ceramic Society, 2022, 42(9): 3986-3995.
[20] GASS S E, GALLIANO P G, MARTINEZ A G T. Impact of preheating on the mechanical performance of different MgO-C bricks—intermediate temperature range[J]. Journal of the European Ceramic Society, 2021, 41(6): 3769-3781.
[21] FU L P, GU H Z, HUANG A, et al. Enhanced corrosion resistance through the introduction of fine pores: role of nano-sized intracrystalline pores[J]. Corrosion Science, 2019, 161: 108182.
[22] FU L P, HUANG A, LIAN P F, et al. Isolation or corrosion of microporous alumina in contact with various CaO-Al2O3-SiO2 slags[J]. Corrosion Science, 2017, 120: 211-218.