• Chinese Journal of Lasers
  • Vol. 34, Issue 5, 595 (2007)
[in Chinese]* and [in Chinese]
Author Affiliations
  • [in Chinese]
  • show less
    DOI: Cite this Article Set citation alerts
    [in Chinese], [in Chinese]. Femtosecond Laser Micromachining: Frontier in Laser Precision Micromachining[J]. Chinese Journal of Lasers, 2007, 34(5): 595 Copy Citation Text show less
    References

    [1] T. Maiman. Stimulated optical radiation in ruby [J]. Nature 1960, 187(4736):493~494

    [2] W. Steen. Laser Material Processing [M]. New York: Springer Verlag, 1991

    [3] R. Fork, C. Cruz, P. C. Becker et al.. Compression of optical pulses to six femtoseconds by using cubic phase compensation [J]. Opt. Lett., 1987, 12(7):483~485

    [4] Y. Chen, K. Naessens, R. Baets et al.. Ablation of transparent materials using excimer lasers for photonic applications [J]. Opt. Rev., 2005, 12(6):427~441

    [5] J. Kruger, W. Kautek. Ultrashort pulse laser interaction with dielectrics and polymers [J]. Adv. Polym. Sci., 2004, 168:247~289

    [6] R. Fork, B. Greene, C. Shank. Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking [J]. Appl. Phys. Lett., 1981, 38(9):671~672

    [7] D. Spence, P. Kean, W. Sibbett. 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser [J]. Opt. Lett., 1991, 16(1):42~45

    [8] D. Strickland, G. Mourou. Compression of amplified chirped optical pulses [J]. Opt. Commun., 1985, 56(3):219~221

    [9] M. Shirk, P. Molian. A review of ultrashort pulsed laser ablation of materials [J]. J. Laser Appl., 1998, 10(1):18~28

    [10] A. Ruf, F. Dausinger. Interaction with metals [J]. Topics Appl. Phys., 2004, 96:105~113

    [11] Y. Yao, H. Chen, W. Zhang. Time scale effects in laser material removal: a review [J]. Int. J. Adv. Manuf. Technol., 2005, 26(5-6):598~608

    [12] S. Nolte, C. Momma, H. Jacobs et al.. Ablation of metals by ultrashort laser pulses [J]. J. Opt. Soc. Am. B, 1997, 14(10):2716~2722

    [13] B. Hüttner, G. Rohr. On the theory of ps and sub-ps laser pulse interaction with metals Ⅰ. surface temperature [J]. Appl. Surf. Sci., 1996, 103(3):269~274

    [14] J. Fujimoto, J. Liu, E. Ippen. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures [J]. Phys. Rev. Lett., 1984, 53(19):1837~1840

    [15] B. Chichkov, C. Momma, S. Nolte et al.. Femtosecond, picosecond, and nanosecond laser ablation of solids [J]. Appl. Phys. A, 1996, 63(2):109~115

    [16] M. Shirk, P. Molian. A review of ultrashort pulsed laser ablation of materials [J]. J. Laser Appl., 1998, 10(1):18~28

    [17] T. Choi, C. Grigoropoulos. Plasma and ablation dynamics in ultrafast laser processing of crystalline silicon [J]. J. Appl. Phys., 2002, 92(9):4918~4925

    [18] M. Lenzner, J. Kruger, S. Sartania et al.. Femtosecond optical breakdown in dielectrics [J]. Phys. Rev. Lett., 1998, 80(18):4076~4079

    [19] G. Mainfray, C. Manus. Multiphoton ionization of atoms [J]. Rep. Prog. Phys., 1991, 54(10):1333~1372

    [20] H. Lubatschowski, A. Heisterkamp. Interaction with biological tissue [J]. Topics Appl. Phys., 2004, 96:91~104

    [21] L. V. Keldysh. Ionization in the field of a strong electromagnetic wave [J]. Sov. Phys. JETP, 1965, 20(5):1307~1314

    [22] J. Lindl. Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain [J]. Phys. Plasmas, 1995, 2(11):3933~4024

    [23] J. Posthumus. The dynamics of small molecules in intense laser fields [J]. Rep. Prog. Phys., 2004, 67(5):623~665

    [24] A. Joglekar, H. Liu, E. Meyhofer et al.. Optics at critical intensity: Applications to nanomorphing [J]. Proc. Nat. Acad. Sci. USA, 2004, 101(16):5856~5861

    [25] J. Noack, A. Vogel. Laser-induced plasma formation in water at nanosecond to femtosecond time scales: Calculation of thresholds, absorption coefficients and energy density [J]. IEEE J. Quantum. Electron., 1999, 35(8):1156~1167

    [26] T. Ditmire, J. Tisch, E. Springate et al.. High-energy ions produced in explosions of superheated atomic clusters [J]. Nature, 1997, 386(6620):54~56

    [27] R. Stoian, A. Rosenfeld, D. Ashkenasi et al.. Surface charging and impulsive ion ejection during ultrashort pulsed laser ablation [J]. Phys. Rev. Lett., 2002, 88(9):97603~97606

    [28] W. Roeterdink, L. Juurlink, O. Vaughan et al.. Coulomb explosion in femtosecond laser ablation of Si(111) [J]. Appl. Phys. Lett., 2003, 82(23):4190~4192

    [29] B. Rethfeld, K. Sokolowski, D. Derlinde et al.. Timescales in the response of materials to femtosecond laser excitation [J]. Appl. Phys. A, 2004, 79(4-6):767~769

    [30] N. Bulgakova. Rarefaction shock wave: Formation under short pulse laser ablation of solids [J]. Phys. Rev. E, 2001, 63(4):046311

    [31] A. Borowiec, D. Bruce, D. Cassidy et al.. Imaging the strain fields resulting from laser micromachining of semiconductors [J]. Appl. Phys. Lett., 2003, 83(2):225~227

    [32] E. Matthias, M. Reichling, J. Siegel et al.. The influence of thermal-diffusion on laser-ablation of metal-films [J]. Appl. Phy. A, 1994, 58(2):129~136

    [33] B. Stuart, M. Feit, S. Herman et al.. Optical ablation by high-power short-pulse lasers [J]. J. Opt. Soc. Am. B, 1996, 13(2):459~468

    [34] M. Lenzner, F. Krausz, J. Kruger et al.. Photoablation with sub-10 fs laser pulses [J]. Appl. Surf. Sci., 2000, 154:11~16

    [35] M. Watanabe, Y. Kuroiwa, S. Ito. Study of femtosecond laser ablation of multicomponent glass [J]. Reports Res. Lab. Asahi Glass Co., Ltd., 2005, 55:27~31

    [36] S. Baudach, J. Bonse, J. Kruger et al.. Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate [J]. Appl. Surf. Sci., 2000, 154:555~560

    [37] M. Watanabe, H. Sun, S. Juodkazis et al.. Three-dimensional optical data storage in vitreous silica [J]. Jpn. J. Appl. Phys., 1998, 37(Part 2, 12B):L1527~L1530

    [38] J. Liu. Simple technique for measurements of pulsed Gaussian-beam spot sizes [J]. Opt. Lett., 1982, 7(5):196~198

    [39] B. Stuart, M. Feit, S. Herman et al.. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics [J]. Phys. Rev. B, 1996, 53(4):1749~1761

    [40] E. Glezer, E. Mazur. Ultrafast-laser driven micro-explosions in transparent materials [J]. Appl. Phys. Lett., 1997, 71(7):882~884

    [41] E. Gamaly, S. Juodkazis, K. Nishimura et al.. Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation [J]. Phys. Rev. B, 2006, 73(21):214101

    [42] Y. Shimotsuma, K. Hirao, P. Kazansky et al.. Three-dimensional micro- and nano-fabrication in transparent materials by femtosecond laser [J]. Jpn. J. Appl. Phys., 2005, 44(Part 1, 7A):4735~4748

    [43] J. Bonse, S. Baudach, J. Krüger et al.. Femtosecond laser ablation of silicon-modification thresholds and morphology [J]. Appl. Phys. A, 2002, 74(1):19~25

    [44] P. Tsai, B. Friedman, A. Ifarraguerri et al.. All-optical histology using neurotechnique ultrashort laser pulses [J]. Neuron, 2003, 39(1):27~41

    [45] S. Juodkazis, H. Misawa, T. Hashimoto et al.. Laser-induced microexplosion confined in a bulk of silica: Formation of nanovoids [J]. Appl. Phys. Lett. , 2006, 88(20):201909

    [46] S. Sundaram, C. Schaffer, E. Mazur. Microexplosions in tellurite glasses [J]. Appl. Phys. A, 2003, 76(3):379~384

    [47] T. Jia, Z. Xu, X.Li et al.. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers [J]. Appl. Phys. Lett., 2003, 82(24):4382~4384

    [48] G. Zhou, M. Gu. Anisotropic properties of ultrafast laser-driven microexplosions in lithium niobate crystal [J]. Appl. Phys. Lett., 2005, 87(24):241107-1~241107-3

    [49] G. Zhou, M. Gu. Direct optical fabrication of three-dimensional photonic crystals in a high refractive index LiNbO3 crystal [J]. Opt. Lett., 2006, 31(18):2783~2785

    [50] K. Yamasaki, S. Juodkazis S, M. Watanabe et al.. Recording by microexplosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films [J]. Appl. Phys. Lett., 2000, 76(8):1000~1002

    [51] F. Gan. Laser Materials [M]. Singapore: World Scientific, 1995. 314

    [52] J. Dickinson, S. Orlando, S. Avanesyan et al.. Color center formation in soda lime glass and NaCl single crystals with femtosecond laser pulses [J]. Appl. Phys. A, 2004, 79(4-6):859~864

    [53] D. Du, X. Liu, G. Kom et al.. Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs [J]. Appl. Phys.Lett., 1994, 64(23):3071~3703

    [54] O. Efimov, K. Gabel, S. Garnov et al.. Color-center generation in silicate glasses exposed to infrared femtosecond pulses [J]. J. Opt. Soc. Am. B, 1998, 15(1):193~199

    [55] K. Davis, K. Miura, N. Sugimoto et al.. Writing waveguides in glass with a femtosecond laser [J]. Opt. Lett., 1996, 21(21):1729~1731

    [56] D. Homoelle, S. Wielandy, A. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses [J]. Opt, Lett., 1999, 24(18):1311~1313

    [57] C. Schaffer, A. Brodeur, J. Garcia et al.. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy [J]. Opt. Lett., 2001, 26(2):93~95

    [58] K. Miura, J. Qiu, H. Inouye et al.. Photowritten optical waveguides in various glasses with ultrashort pulse laser [J]. Appl. Phys. Lett., 1997, 71(23):3329~3331

    [59] D. Homoelle, S. Wielandy, A. Gaeta et al.. Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses [J]. Opt. Lett., 1999, 24(18):1311~1313

    [60] A. Streltsov, F. Borrelli. Study of femtosecond-laser-written waveguides in glasses [J]. J. Opt. Soc. Am. B, 2002, 19(10):2496~2504

    [62] F. Ganikhanov, K. Burr, D. Hilton et al.. Femtosecond optical-pulse-induced absorption and refractive-index changes in GaAs in the midinfrared [J]. Phys. Rev. B, 1999, 60(12):8890~8896

    [63] M. Kamata. M. Obara. Control of the refractive index change in fused silica glasses induced by a loosely focused femtosecond laser [J]. Appl. Phys. A, 2004, 78(1):85~88

    [64] H. Guo, H. Jiang, Y. Fang et al.. The pulse duration dependence of femtosecond laser induced refractive index modulation in fused silica [J]. J. Opt. A: Pure Appl. Opt., 2004, 6(8):787~790

    [65] K. Yamada, W. Watanabe, T. Toma et al.. In situ observation of photoinduced refractive-index changes in filaments formed in glasses by femtosecond laser pulses [J]. Opt. Lett., 2001, 26(1):19~21

    [66] L. Dinga, R. Blackwellb, J. Künzlerb et al.. Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micro-machining [J]. Opt. Express, 2006, 14(24):11901~11909

    [67] V. Bhardwaj, E. Simova, P. Corkum et al.. Femtosecond laser-induced refractive index modification in multicomponent glasses [J]. J. Appl. Phys., 2005, 97(8):083102

    [68] H. M. van Driel, J. E. Sipe, J. F. Young. Laser-induced periodic surface structure on solids: a universal phenomenon [J]. Phys. Rev. Lett., 1982, 49(26):1955~1958

    [69] J. E. Sipe, J. F. Young, J. S. Preston et al.. Laser-induced periodic surface structure. Ⅰ. Theory [J]. Phys. Rev. B, 1983, 27(2):1141~1154

    [70] S. E. Clark, D. C. Emmony. Ultraviolet-laser-induced periodic surface structures [J]. Phys. Rev. B, 1989, 40(4):2031~2041

    [71] A. Vorobyev, C. Guo. Effects of nanostructure-covered femtosecond laser-induced periodic surface structures on optical absorptance of metals [J]. Appl. Phys. A, 2007, 86(3):321~324

    [72] F. Costache, M. Henyk , J. Reif. Surface patterning on insulators upon femtosecond laser ablation [J]. Appl. Surf. Sci., 2003, 208:486~491

    [73] G. Seifert, M. Kaempfe, F. Syrowatka et al.. Self-organized structure formation on the bottom of femtosecond laser ablation craters in glass [J]. Appl. Phys. A, 2005, 81(4):799~803

    [74] O. Varlamova, F. Costache, J. Reif et al.. Self-organized pattern formation upon femtosecond laser ablation by circularly polarized light [J]. Appl. Surf. Sci., 2006, 252:4702~4706

    [75] E. Toratani, M. Kamata, M. Obara. Self-fabrication of void array in fused silica by femtosecond laser processing [J]. Appl. Phys. Lett., 2005, 87(17):171103

    [76] A. Zewail. Femtochemistry: Atomic-scale dynamics of the chemical bond [J]. J. Phys. Chem. A, 2000, 104(24):5660~5694

    [77] R. Taylor, C. Hnatovsky, E. Simova et al.. Femtosecond laser fabrication of nanostructures in silica glass [J]. Opt. Lett., 2003, 28(12):1043~1045

    [78] Y. Cheng, K. Sugioka, K. Midorikawa. Freestanding optical fibers fabricated in a glass chip using femtosecond laser micromachining for lab-on-a-chip application [J]. Opt. Express, 2005, 13(18):7225~7232

    [79] S. Maruo, O. Nakamura, S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization [J]. Opt. Lett., 1997, 22(2):132~134

    [80] A. Kabashin, M. Meunier, C. Kingston et al.. Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins [J]. J. Phys. Chem. B, 2003, 107(19):4527~4531

    [81] B. Fisette, F. Busque, J. Degorce et al..Three-dimensional crystallization inside photosensitive glasses by focused femtosecond laser [J]. Appl. Phys. Lett., 2006, 88(9):091104

    [82] C. Wang, K. Ho, M. Shirk et al.. Laser-Induced Graphitization on a Diamond(111) Surface [J]. Phys. Rev. Lett., 2000, 85(19):4092~4095

    [83] W. Kautek, J. Krüger. Femtosecond pulse laser ablation of metallic, semiconducting, ceramic and biological materials [C]. SPIE, 1994, 2207:600~611

    [84] C. Florea, K. Winick. Fabrication and Characterization of Photonic Devices Directly Written in Glass Using Femtosecond Laser Pulses [J]. J. Lightwave Technol., 2003, 21(1):246~253

    [85] J. Chan, T. Huser, S. Risbud et al.. Waveguide fabrication in phosphate glasses using femtosecond laser pulses [J]. Appl. Phys. Lett., 2003, 82(15):2371~2373

    [86] Y. Cheng, K. Sugioka, K. Midorikawa et al.. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser [J]. Opt. Lett., 2003, 28(1):55~57

    [87] C. Hnatovsky, R. Taylor, E. Simova et al.. Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching [J]. Appl. Phys. A, 2006, 84(1-2):47~61

    [89] A. Maznev, T. Crimmins, K. Nelson. How to make femtosecond pulses overlap [J]. Opt. Lett., 1998, 23(17):1378~1380

    [90] T. Kondo, S. Matsuo, S. Juodkazis et al.. Femtosecond laser interference technique with diffractive beam splitter for fabrication of three-dimensional photonic crystals [J]. Appl. Phys. Lett., 2001, 79(6):725~727

    [91] J. Klein-Wiele, J. Bekesi, P. Simon. Sub-micron patterning of solid materials with ultraviolet femtosecond pulses [J]. Appl. Phys. A, 2004, 79(4-6):775~778

    [92] T. Kondo, S. Matsuo, S. Juodkazis. Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses [J]. Appl. Phys. Lett., 2003, 82(17):2578~2580

    [93] J. Klein-Wiele, P. Simon. Fabrication of periodic nanostructures by phase-controlled multiple-beam interference [J]. Appl. Phys. Lett., 2003, 83(23):4707~4709

    [94] K. Kawamura, N. Sarukura, M.Hirano. Periodic nanostructure array in crossed holographic gratings on silica glass by two interfered infrared-femtosecond laser pulses [J]. Appl. Phys. Lett., 2001, 79(9):1228~1230

    [95] Y. Li. Holographic fabrication of multiple layers of grating inside soda-lime glass with femtosecond laser pulses [J]. Appl. Phys. Lett., 2002, 80(9):1508~1510

    [96] M. Hirano, K. Kawamura, H. Hosono. Encoding of holographic grating and periodic nano-structure by femtosecond laser pulse [J]. Appl. Surf. Sci., 2002, 197:688~698

    [97] S. Backus, J. Peatross, Z. Zeek et al.. 16-fs, 1-mu J ultraviolet pulses generated by third-harmonic conversion in air [J]. Opt. Lett., 1996, 21(9):665~667

    [98] G. Marcus, A. Zigler, Z. Henis. Third-harmonic generation at a atmospheric pressure in methane by use of intense femtosecond pulses in the tight-focusing limit [J]. J. Opt. Soc. Am. B, 1999, 16(5):792~800

    [99] Y. Nakata, T. Okada, M. Maeda. Lithographical laser ablation using femtosecond laser[J]. Appl. Phys. A, 2004, 79(4-6):1481~1483

    [100] Y. Kuroiwa, N. Takeshima, Y. Narita et al.. Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements [J]. Opt. Express, 2004, 12(9):1908~1915

    [101] G. Lee, S. Song, Y. Lee et al.. Arbitrary surface structuring of amorphous silicon films based on femtosecond-laser-induced crystallization [J]. Appl. Phys. Lett., 2006, 89(15):151907

    [102] D. Higgins, T. Everett, A. Xie et al.. High-resolution direct-write multiphoton photolithography in poly(methylmethacrylate) films [J]. Appl. Phys. Lett., 2006, 88(18):184101

    [103] S. Matsuo, S. Juodkazis, H. Misawa. Femtosecond laser microfabrication of periodic structures using a microlens array [J]. Appl. Phys. A, 2005, 80(4):683~685

    [104] H. Sun, S. Kawata. Multiple-spot parallel processing for laser micronanofabrication [J]. Appl. Phys. Lett., 2005, 86(4):044102

    [105] G. Cerullo, R. Osellame, S. Taccheo et al.. Femtosecond micromachining of symmetric waveguides at 1.5 μm by astigmatic beam focusing [J]. Opt. Lett., 2002, 27(21):1938~1940

    [106] D. Kawamura, A. Takita, Y. Hayasaki et al.. Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating [J]. Appl. Phys. A, 2006, 82(3):523~527

    [107] J. Chan, T. Huser, S. Risbud et al.. Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses [J]. Appl. Phys. A, 2003, 76(3):367~372

    [108] J. Woo, S. Lee, J. Chung. Fabrication of photonic devices directly written within glass using a femtosecond laser [J]. Opt. Express, 2005, 13(11):4224~4229

    [109] A. Streltsov, N. Borrelli. Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses [J]. Opt. Lett., 2001, 26(1):42~44

    [110] W. Watanabe, Y. Note, K. Itoh. Fabrication of multimode interference waveguides in glass by use of a femtosecond laser [J]. Opt. Lett., 2005, 30(21):2888~2890

    [111] A. Martinez, M. Dubov, I. Khrushchev et al.. Direct writing of fibre Bragg gratings by femtosecond laser [J]. Elect. Lett., 2004, 40(19):1170~1172

    [112] A. Dragomir, D. Nikogosyan, K. Zagorulko et al.. Inscription of fiber Bragg gratings by ultraviolet femtosecond radiation [J]. Opt. Lett., 2003, 28(22):2171~2173

    [113] C. Smelser, D. Grobnic, S. Mihailov. Generation of pure two-beam interference grating structures in an optical fiber with a femtosecond infrared source and a phase mask [J]. Opt. Lett., 2004, 29(15):1730~1732

    [114] Y. Nasu, M. Kohtoku, Y. Hibino. Low-loss waveguides written with a femtosecond laser for flexible interconnection in a planar light-wave circuit [J]. Opt. Lett., 2005, 30(7):723~725

    [115] W. Watanabe, T. Asano, K. Yamada et al.. Wavelength division with three-dimensional couplers fabricated by filamentation of femtosecond laser pulses [J]. Opt. Lett., 2003, 28(24):2491~2493

    [116] A. Kowalevicz, V. Sharma, E. Ippen et al.. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator [J]. Opt. Lett., 2005, 30(9):1060~1062

    [117] M. Masuda, K. Sugioka, Y. Cheng et al.. 3-D microstructuring inside photosensitive glass by femtosecond laser excitation [J]. 76(5):Appl. Phys. A., 2003, 76(5):857~860

    [118] Y. Cheng, K. Sugioka, K. Midorikawa et al.. Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser [J]. Opt. Lett., 2003, 28(13):1144~1146

    [119] T. Hongo, K. Sugioka, H. Niino et al.. Investigation of photoreaction mechanism of photosensitive glass by femtosecond laser [J]. J. Appl. Phys., 2005, 97(6):063517

    [120] Y. Cheng, H.Tsai, K. Sugioka et al.. Fabrication of 3D microoptical lenses in photosensitive glass using femtosecond laser micromachining [J]. Appl. Phys. A, 2006, 85(1):11~14

    [121] Y. Cheng, K. Sugioka, M. Masuda et al.. Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser [J]. Opt. Express, 2003, 11(15):1089~1096

    [122] N. Garcia, E. Ponizovskaya, J. Xiao. Zero permittivity materials: Band gaps at the visible [J]. Appl. Phys. Lett., 2002, 80(7):1120~1122

    [123] R. Madrigal, L. Blaya, M. Ulibarrena et al.. Diffraction efficiency of unbleached phase and amplitude holograms as a function of volumn fraction of metallic silver [J]. Opt. Commun., 2002, 201(4-6):279~282

    [124] K. Kaneko, H. Sun, X. Duan et al.. Two-photon photoreduction of metallic nanoparticle gratings in a polymer matrix [J]. Appl. Phys. Lett., 2003, 83(7):1426~1428

    [125] N. Takeshima, Y. Narita, S. Tanaka et al.. Fabrication of high-efficiency diffraction gratings in glass [J]. Opt. Lett., 2005, 30(4):352~354

    [126] E. Bricchi, J. Mills, P. Kazansky et al. Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining [J]. Opt. Lett., 2002, 27(24):2200~2202

    [127] W. Watanabe, D. Kuroda, K. Itoh. Fabrication of Fresnel zone plate embedded in silica glass by femtosecond laser pulses [J]. Opt. Express, 2002, 10(19):978~983

    [128] K. Sugioka, Y. Cheng, K. Midorikawa. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture [J]. Appl. Phys. A, 2005, 81(1):1~10

    [129] S. Noda, K. Tomoda, N. Yamamoto et al.. Full three-dimensional photonic bandgap crystals at near-Infrared wavelengths [J]. Science, 2000, 289(5479):604~606

    [130] M. Loncar, D. Nedeljkovic, T. Doll et al.. Waveguiding in planar photonic crystals [J]. Appl. Phys. Lett., 2000, 77(13):1937~1939

    [131] J. Joannopoulos, P. Villeneuve, S. Fan. Photonic crystals: putting a new twist on light [J]. Nature, 1997, 386(6621):143~149

    [132] K. Srinivasan, P. Barclay, O. Painter et al.. Experimental demonstration of a high quality factor photonic crystal microcavity [J]. Appl. Phys. Lett., 2003, 83(10):1915~1917

    [133] W. Lee, S. Pruzinsky, P. Braun. Multi-photon polymerization of waveguide structures within three dimensional photonic crystals [J]. Adv. Mater., 2002, 14(4):271~274

    [134] Y. Ye, S. Badilescu, V. Truong. Large-scale ordered macroporous SiO2 thin films by a template directed method [J]. Appl. Phys. Lett., 2002, 81(4):616~618

    [135] M. Campbell, D. Sharp, M. Harrison et al..Fabrication of photonic crystals for the visible spectrum by holographic lithography [J]. Nature, 2000, 404(6773):53~56

    [136] C. Ullal, M. Maldovan, E. Thomas et al.. Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures [J]. Appl. Phys. Lett., 2004, 84(26):5434~5436

    [137] N. Takeshima, Y. Narita, T. Nagata et al.. Fabrication of photonic crystals in ZnS-doped glass [J]. Opt. Lett., 2005, 30(5):537~539

    [138] H. Sun, Y. Xu, S. Juodkazis et al.. Arbitrary-lattice photonic crystals created by multiphoton microfabrication [J]. Opt. Lett., 2001, 26(6):325~327

    [139] G. Zhou, M. Ventura, M. Straub et al.. In-plane and out-of-plane band-gap properties of a two-dimensional triangular polymer-based void channel photonic crystal [J]. Appl. Phys. Lett., 2004, 84(22):4415~4417

    [140] G. Zhou, M. Ventura, M. Vanner et al.. Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material [J]. Opt. Lett., 2004, 29(19):2240~2242

    [141] G. Zhou, M. Ventura, M. Gu et al.. Photonic bandgap properties of void-based body centered-cubic photonic crystals in polymer [J]. Opt. Express, 2005, 13(12):4390~4396

    [142] G. Zhou, M, Ventura, M. Vanner et al.. Fabrication and characterization of face-centered-cubic void dots photonic crystals in a solid polymer material [J]. Appl. Phys. Lett., 2005, 86(1):011108

    [143] D. Parthenopoulos, P. Rentzepis. Three-Dimensional Optical Storage Memory [J]. Science, 1989, 245(4920):843~845

    [144] E. Glezer, M. Milosavljevic, L. Huang et al.. Three-dimensional optical storage inside transparent materials [J]. Opt. Lett., 1996, 21(24):2023~2025

    [145] J. Qiu, K. Miura, K. Hirao. Three-dimensional optical memory using glasses as a recording medium through a multi-photon absorption process [J]. Jpn. J. Appl. Phys., 1998, 37(Part 1, 4B):2263~2266

    [146] M. Hong, B. Yanchuk, S. Huang et al.. Femtosecond laser application for high capacity optical data storage [J]. Appl. Phys. A, 2004, 79(4-6):791~794

    [147] Y. Martin, S. Rishton, H. Wickramasinghe. Optical data storage read out at 256 Gbits/in(2) [J]. Appl. Phys. Lett., 1997, 71(1):1~3

    [148] T. Wilson, Y. Kawata and S. Kawata. Readout of three-dimensional optical memories [J]. Opt. Lett., 1996, 21(13):1003~1005

    [149] H. Sun, S. Matsuo, H. Misawa. Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin [J]. Appl. Phys. Lett., 1999, 74(6):786~788

    [150] B. Cumpston, S. Ananthave, S. Barlow DL et al.. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J]. Nature, 1999, 398(6722):51~54

    [151] W. Zhou, S. Kuebler, K. Braun et al.. An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication [J]. Science, 2002, 296(5570):1106~1109

    [152] H. Sun, S. Kawata. Two-photon laser precision microfabrication and its applications to micro-nano devices and systems [J]. J. Lightwave Technol., 2003, 21(3):624~633

    [153] K. Lee, D. Yang, S. Park et al.. Recent developments in the use of two-photon polymerization in precise 2D and 3D microfabrications [J]. Polym. Adv. Technol., 2006, 17(2):72~82

    [154] F. Formanek, N. Takeyasu, T. Tanaka et al.. Three-dimensional fabrication of metallic nanostructures over large areas by two-photon polymerization [J]. Opt. Express, 2006, 14(2):800~809

    [155] J. Serbin, A. Egbert, A. Ostendorf et al.. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics [J]. Opt. Lett., 2003, 28(5):301~303

    [156] M. Straub, M. Gu. Near-infrared photonic crystals with higher-order bandgaps generated by two-photon photopolymerization [J]. Opt. Lett., 2002, 27(20):1824~1826

    [157] C. Reinhardt, S. Passinger, B. Chichkov. Laser-fabricated dielectric optical components for surface plasmon polaritons [J]. Opt. Lett., 2006, 31(9):1307~1309

    [158] K. Komatsu, J. Ishihara, O. Sugojara et al.. Fabrication of calixarene derivative optical waveguide using two-photon assisted polymerization method [J]. Jpn. J. Appl. Phys., 2006, 45(Part 1, 1B):479~482

    [159] V. Maselli, R. Osellame, G. Cerullo et al.. Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching [J]. Appl. Phys. Lett., 2006, 88(19):191107

    [160] M. Giridhar, K. Seong, A. Schülzgen et al.. Femtosecond pulsed laser micromachining of glass substrates with application to microfluidic devices [J]. Appl. Opt., 2004, 43(23):4584~4589

    [161] Y. Iga, T. Ishizuka, W. Watanabe et al.. Characterization of micro-channels fabricated by in-water ablation of femtosecond laser pulses [J]. Jpn. J. Appl. Phys., 2004, 43(Part 1, 7A):4207~4211

    [162] R. An, Y. Li, Y. Dou et al.. Water-assisted drilling of microfluidic chambers inside silica glass with femtosecond laser pulses [J]. Appl. Phys. A, 2006, 83(1):27~29

    [163] Y. Cheng, K. Sugioka, K. Midorikawa. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing [J]. Opt. Lett., 2004, 29(17):2007~2009

    [165] R. Philip, G. Kumar, N. Sandhyarani et al.. Picosecond optical nonlinearity in monolayer-protected gold, silver, and gold-silver alloy nanoclusters [J]. Phys. Rev. B, 2000, 62(19):13160~13166

    [166] H. Liao, R. Xiao, H. Wang et al. Large third-order optical nonlinearity in Au :TiO2 composite films measured on a femtosecond time scale [J]. Appl. Phys. Lett., 1998, 72(15):1817~1819

    [167] S. Eliezer, N. Eliaz, E. Grossman et al.. Nanoparticles and nanotubes induced by femtosecond lasers [J]. Laser Part. Beams, 2005, 23(1):15~19

    [168] S. Amoruso, G. Ausanio, R. Bruzzese et al.. Femtosecond laser pulse irradiation of solid targets as a general route to nanoparticle formation in a vacuum [J]. Phys. Rev. B, 2005, 71(3):033406

    [169] A. Kabashin, M. Meunier. Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water [J]. J. Appl. Phys., 2003, 94(12):7941~7943

    [170] S. Kwiet, D. Starr, A. Grujic et al.. Femtosecond laser induced desorption of water from silver nanoparticles [J]. Appl. Phys. B, 2005, 80(1):115~123

    [171] J. Sylvestre, A. Kabashin, E. Sacher et al.. Femtosecond laser ablation of gold in water: influence of the laser-produced plasma on the nanoparticle size distribution [J]. Appl. Phys. A, 2005, 80(4):753~758

    [172] J. Qiu, X. Jiang, C. Zhu et al.. Optical properties of structurally modified glasses doped with gold ions [J]. Opt. Lett., 2004, 29(4):370~372

    [173] S. Qu, J. Qiu, C. Zhao et al. Metal nanoparticle precipitation in periodic arrays in Au2O-doped glass by two interfered femtosecond laser pulses [J]. Appl. Phys. Lett., 2004, 84(12):2046~2048

    [174] D. Geohegan, A. Puretzky, G. Duscher et al.. Time-resolved imaging of gas phase nanoparticle synthesis by laser ablation [J]. Appl. Phys. Lett., 1998, 72(23):2987~2989

    [175] A. Kabashin, J. Sylvestre, S. Patskovsky et al.. Correlation between photoluminescence properties and morphology of laser-ablated Si/SiOx nanostructured films [J]. J. Appl. Phys., 2002, 91(5):3248~3254

    [176] S. Link, C. Burda, B. Nikoobakht et a1.. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses [J]. Phys. Chem. B, 2000, 104(26):6152~6163

    [177] A. Fojtik, A. Henglein. Laser ablation of film and suspended particles in a solvent-formation of cluster and colloid solutions [J]. Phys. Chem., 1993, 97(2):252~254

    [178] J. Qiu, M. Shirai, T. Nakaya et al.. Space-selective precipitation of metal nanoparticles inside glasses [J]. Appl. Phys. Lett., 2002, 81(16):3040~3042

    [180] T. Juhasz, F. Loesel, R. Kurtz et al.. Corneal Refractive Surgery with Femtosecond Lasers [J]. IEEE J. Select. Topics Quantum Elect., 1999, 5(4):902~910

    [181] A. Heisterkamp, I. Maxwell, E. Mazur et al.. Pulse energy dependence of subcellular dissection by femtosecond laser pulses [J]. Opt. Express, 2005, 13(10):3690~3696

    [182] K. Venkatakrishnan, B. Ngoi, P. Stanley et a1.. Laser writing techniques for photomask fabrication using a femtosecond laser [J]. Appl. Phys. A, 2002,74(4):493~496

    [183] W. Watanabea, S. Onda, T. Tamaki et al.. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses [J]. Appl. Phys. Lett., 2006, 89(2):021106

    CLP Journals

    [1] Jiang Jun, Liu Jinqiao, Xu Ying, Yu Yanhao. Laser Direct Writing Technique of Diffraction Optical Element on Curved-Surface Substrate[J]. Chinese Journal of Lasers, 2017, 44(6): 602002

    [2] Wu Xiaohu, Zhao Fei, Xie Wenjia, Lv Changwei, Liang Renjin. Microstructure and Properties of Laser Weld Joints of Reduced Activation Martensitic Steel[J]. Chinese Journal of Lasers, 2010, 37(2): 577

    [3] Yang Qibiao, Xiao Chenguang, Chen Zhongpei, Chen Lie, Lou Deyuan, Tao Qing, Zhen Zhong, Zhai Zhongsheng, Liu Dun, Bennett Peter. Surface Wettability of Laser-Induced Al2O3 Ceramic Tools[J]. Laser & Optoelectronics Progress, 2017, 54(10): 101401

    [4] Liu Ling, Sun Hongchao, Chao Zexin, Zhang Qiaoli, Shi Yijin. Laser Electron Accelerator in Plasma with Adiabatically Attenulating Density of Different Modes[J]. Chinese Journal of Lasers, 2009, 36(11): 2859

    [5] Wang Yawei, Wang Lifeng, Deng Xiaobin, Liu Ying, Bu Min. Ellipsoidal Time and Space Model for Femtosecond Laser-Induced Optical Breakdown in Water[J]. Chinese Journal of Lasers, 2008, 35(10): 1491

    [6] WANG Feng, LUO Jian-jun, LI Ming. High-precision Method of Machining Taper Holes of Diesel Engine Nozzle with Femtosecond Laser[J]. Acta Photonica Sinica, 2014, 43(4): 414003

    [7] Zhang Rongtao, Xu Li, Wu Keyue. Emission of Low-Dimensional Structures Formed by Femtosecond Laser Interaction with Semiconductor[J]. Acta Optica Sinica, 2009, 29(3): 743

    [8] Liu Yang, Yu Jin, Zhang Xue, Huang Yutao, Fan Zhongwei, Mo Zeqiang. Design and Experimental Study of Picosecond Laser Machining System[J]. Chinese Journal of Lasers, 2013, 40(s1): 103001

    [9] Zhou Shuqing, Ma Guojia, Wang Chunhua, Zhang Wei. Rule of Morphology Variation of Ti Alloy Surface Induced by Femtosecond Lasers[J]. Chinese Journal of Lasers, 2016, 43(9): 902003

    [10] Zhang Yanjie, Song Haiying, Liu Haiyun, Liu Xun, Li Wei, Liu Shibing. Fabrication of Millimeter-Scaled Holes by Femtosecond Laser Filamentation[J]. Chinese Journal of Lasers, 2017, 44(4): 402012

    [11] Li Yi, Hu Minglie, Jia Wei, Liu Bowen, Song Youjian, Wang Qingyue. Micro-Relief Structures Forming on 45# Steel Induced by High Repetition Rate Femtosecond Laser[J]. Chinese Journal of Lasers, 2010, 37(S1): 339

    [12] Wang Defei, Yu Jiping, Guo Chunfeng, Qi Wenzong. Thermal Effect Analysis of Metal Film Ablation by Ultra-Short Laser Pulses[J]. Chinese Journal of Lasers, 2008, 35(10): 1579

    [13] Wang Yuqian, Zhang Junzhan, Liu Yongsheng, Yang Xiaojun, Li Weinan, Wang Chunhui. Effect of Femtosecond Laser Parameters on TiC Ceramic Micro-Hole Drilling[J]. Chinese Journal of Lasers, 2014, 41(10): 1003010

    [14] Yu Zhou, Zhang Wenjie, Hu Jun. Micromachining of Titanium Alloy Implant by Picosecond Laser Surface Texturing and Alloy Biocompatibility[J]. Chinese Journal of Lasers, 2017, 44(1): 102014

    [15] Di Jianke, Zhou Ming, Yang Haifeng, Kong Junjie, Dai Juan. Manufacturing Micro-Biological Device and Scaffold Research with Two-Photon Femtosecond Laser Technology[J]. Chinese Journal of Lasers, 2009, 36(1): 249

    [16] Hao Xin, Zhu Qihua, Wang Xiao, Geng Yuanchao, Zhou Kainan, Huang Zheng, Wang Fengrui. Influence of the Spatial Irregular Intensity Distribution on the Single-Shot Second-Order Autocorrelator[J]. Chinese Journal of Lasers, 2008, 35(10): 1553

    [17] Wei Di, Cheng Ping, Chen Xiangdong, Wu Benke, Gao Feng. Study on Femtosecond Laser Processing of Nonmetal Vascular Stent[J]. Laser & Optoelectronics Progress, 2013, 50(9): 91403

    [18] Li Li, Fan Zhongwei, Yu Jin, Niu Gang, Teng Songhan, Tang Xiongxin. Research Progress of Yb:KGW Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2012, 49(11): 110004

    [19] Xu Guojian, Zhong Liming, Hang Zhengxiang, Li Ting, Xing Fei, Shi Lei, Chang Lili. Performance of Narrow Gap Laser Welding with Filling Wire for SUS304 Stainless Steel[J]. Chinese Journal of Lasers, 2013, 40(10): 1003001

    [20] Zijie Lin, Jian Xu, Ya Cheng. Laser assisted 3D metal microprinting (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201079

    [21] Hu Mengning, Ge Licheng, Zhang Jinping, Chen Yuping, Chen Xianfeng. Hole-Drilling with High Depth-Diameter Ratio Using Multi-Pulse Femtosecond Laser[J]. Chinese Journal of Lasers, 2016, 43(4): 403006

    [22] Hou Wenbo, Zhang Mingchang, Lu Peixiang, Long Hua, Hou Diangen. Experimental Study of Femtosecond Laser-Assisted Deep Lamellar Cut in Rabbit Corneas[J]. Chinese Journal of Lasers, 2009, 36(10): 2670

    [23] Liu Yang, Yu Jin, Zhang Xue, Mo Zeqiang, Nie Shuzhen, Huang Yutao, Fan Zhongwei, Chen Bo. Investigation and Application of Coaxial Output Three-Wavelength Picosecond Laser Micro-Machining System[J]. Laser & Optoelectronics Progress, 2013, 50(5): 51402

    [24] Li Shixiong, Bai Zhongchen, Chen Deliang, Qin Shuijie. Research on the Fabrication of Micro Channels in Fused Silica Substrates by Laser-Induced Plasma[J]. Laser & Optoelectronics Progress, 2013, 50(11): 111403

    [25] Hu Minglie, Song Youjian, Liu Bowen, Fang Xiaohui, Zhang Chi, Liu Huagang, Liu Feng, Wang Changlei, Chai Lu, Xing Qirong, Wang Qingyue. Development and Advanced Applications of Femtosecond Photonic Crystal Fiber Laser Technique[J]. Chinese Journal of Lasers, 2009, 36(7): 1660

    [26] Li Rujian, Tang Xionggui, Liao Jinkun, Guo Haibo, Yin Gen. Recent Development in Microfluidic Optical Waveguide Devices[J]. Laser & Optoelectronics Progress, 2014, 51(1): 10004

    [27] Lan Jiang, Lishan Li, Sumei Wang, Hai-Lung Tsai. Microscopic energy transport through photon-electron-phonon interactions during ultrashort laser ablation of wide bandgap materials Part Ⅰ: photon absorption[J]. Chinese Journal of Lasers, 2009, 36(4): 779

    [28] WU Yin-zhong, WANG Qing-yue, JIA Wei, HU Ming-lie, CHAI Lu. Micro-concave-surface Fabricated on a Photosensitive Glass by Femtosecond Laser[J]. Acta Photonica Sinica, 2009, 38(7): 1597

    [29] Yan Tianyang, Ji Lingfei, Li Lin, Amina, Wang Wenhao, Lin Zhenyuan, Yang Qiang. Submicron Fine Cutting-Surface of Sapphire Obtained by Chemical Corrosion Assisted Picosecond Laser Filamentation Technology[J]. Chinese Journal of Lasers, 2017, 44(10): 1002002

    [30] Yang Qibiao, Chen Zhongpei, Yang Tao, Zhang Hong, Lou Deyuan, Liu Dun. Surface Wettability of Different Micro-Textured YG6 Processed by Femtosecond Lasers[J]. Laser & Optoelectronics Progress, 2018, 55(9): 91404

    [31] Zhang Zhixin, Yu Hailong, Zhi Dong, Ma Yanxing, Wang Xiaolin, Zhou Pu, Si Lei. All Fiber Optical Path Difference Adaptive Control Method in Femtosecond Fiber Laser Coherent Polarization Beam Combination System[J]. Acta Optica Sinica, 2016, 36(9): 906003

    [32] Hu Xuefang, He Rushuang, Tao Weidong, Dong Jianfeng. Study on the Fabrication and Properties of a Micro Three-Dimension Array Doped with Fluorescent Material[J]. Acta Optica Sinica, 2015, 35(6): 626002

    [33] Cui Hui, Liu Shijie, Zhao Yuanan, Yang Jun, Liu Jie, Liu Wenwen. Study on Total Internal Reflection Microscopy for Subsurface Damage[J]. Acta Optica Sinica, 2014, 34(6): 612004

    [34] Yang Guishuan, Chen Tao, Chen Hong. Crack-Free Silica Glass Surface Micro-Grooves Etched by 248 nm Excimer Lasers[J]. Chinese Journal of Lasers, 2017, 44(9): 902004

    [35] Sun Ruoyu, Tan Fangzhou, Jin Dongchen, Hong Chang, Wang Pu. 1 μm Femtosecond Fiber Chirped Pulse Amplification System Based on Dispersion Wave[J]. Chinese Journal of Lasers, 2018, 45(1): 101001

    [36] Wang Yuerong, Li Yi, He Shutong, Mao Pengcheng, Hu Minglie. Femtosecond Laser Directly Writing Two Dimensional Metal Sub-wavelength Hole Array Applicable to Terahertz Band[J]. Laser & Optoelectronics Progress, 2011, 48(5): 51402

    [37] YANG Qi-biao, ZHANG Hong, ZHOU Wei, CHEN Zhong-pei, TAO Qing, LIU Dun. Surface Incubation Effect of Carbide YG6 Induced by Femtosecond Laser[J]. Acta Photonica Sinica, 2019, 48(6): 614002

    [38] Xia Guocai, Sun Xiaoyan, Duan Ji′an. Beam Shaping Technologies for High Efficiency Laser Fabrication[J]. Laser & Optoelectronics Progress, 2012, 49(10): 100002

    [39] Xing Songling, Liu Lei, Zou Guisheng, Zhang Xueqian, Bai Hailin, Y N. Effects of Femtosecond Laser Parameters on Hole Drilling of Silica Glass[J]. Chinese Journal of Lasers, 2015, 42(4): 403001

    [40] Tang Yanfu, Nie Zhenwei. Study on Periodic Ripples on Metallic Surfaces Induced by Polarized Lasers[J]. Chinese Journal of Lasers, 2015, 42(7): 702002

    [41] Zhang Qi, Zhang Weigang, Zhang Jian, Liu Zhuolin, Jiang Meng, Liu Yaping, Lin Jinhai. Micro-Cavity Fabricated by Femtosecond Lasers and Its Application in Fiber-Loop Ring-Down Spectroscopy[J]. Chinese Journal of Lasers, 2009, 36(3): 713

    [42] Jin Zhanlei, Tan Jiubin, Zhang Shan, Wang Lei. Research of Linewidth Stabilizing Method During Defocusing Laser Direct Writing[J]. Acta Optica Sinica, 2008, 28(9): 1730

    [in Chinese], [in Chinese]. Femtosecond Laser Micromachining: Frontier in Laser Precision Micromachining[J]. Chinese Journal of Lasers, 2007, 34(5): 595
    Download Citation