• NUCLEAR TECHNIQUES
  • Vol. 47, Issue 10, 100203 (2024)
Yongchun FENG1, Yucong CHEN1,2, Xincai KANG1,3, Weilong LI1..., Kai TANG1, Zulong ZHAO1, Tiecheng ZHAO1, Zhiguo XU1,4, Ruishi MAO1,4,* and Guoqing XIAO1,4|Show fewer author(s)
Author Affiliations
  • 1Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 2Lanzhou University, Lanzhou 730000, China
  • 3Lanzhou University of Technology, Lanzhou 730000, China
  • 4University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.11889/j.0253-3219.2024.hjs.47.100203 Cite this Article
    Yongchun FENG, Yucong CHEN, Xincai KANG, Weilong LI, Kai TANG, Zulong ZHAO, Tiecheng ZHAO, Zhiguo XU, Ruishi MAO, Guoqing XIAO. Design and operation experiences of a multi-wire detector under high beam power environment[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100203 Copy Citation Text show less
    Diagram of wire deformation (a) and its details under a microscope (b)
    Fig. 1. Diagram of wire deformation (a) and its details under a microscope (b)
    Maximum temperature evolutions under various pulse lengths and duty factor
    Fig. 2. Maximum temperature evolutions under various pulse lengths and duty factor
    Comparison of the temperature simulations between this work and other studies(a) Compared to Institute of High Energy Physics simulation, (b) Compared to Rutherford Appleton Laboratory simulation
    Fig. 3. Comparison of the temperature simulations between this work and other studies(a) Compared to Institute of High Energy Physics simulation, (b) Compared to Rutherford Appleton Laboratory simulation
    Temperature test experiment layout at the ion source platform
    Fig. 4. Temperature test experiment layout at the ion source platform
    Wire deformation observed in the ion source heating experiment (a) The wire deformation shot by Infrared camera, (b) Wire deformation
    Fig. 5. Wire deformation observed in the ion source heating experiment (a) The wire deformation shot by Infrared camera, (b) Wire deformation
    Emissivity of 40 µm diameter tungsten wires as a function of temperature[26]
    Fig. 6. Emissivity of 40 µm diameter tungsten wires as a function of temperature[26]
    Temperature evolution of the wire by numerical simulation under the heating experiment condition
    Fig. 7. Temperature evolution of the wire by numerical simulation under the heating experiment condition
    SEY of proton in gold under various incident energy levels
    Fig. 8. SEY of proton in gold under various incident energy levels
    Simulation curves of temperature evolution of the wire in HFRS (a) Proton, (b) 238U35+
    Fig. 9. Simulation curves of temperature evolution of the wire in HFRS (a) Proton, (b) 238U35+
    Diagram of multiwire design in HFRS (a) Ceramic circuit board-based welding detector, (b) Ceramic circuit board-based tensioning detector, (c) Mechanical design of the multiwires
    Fig. 10. Diagram of multiwire design in HFRS (a) Ceramic circuit board-based welding detector, (b) Ceramic circuit board-based tensioning detector, (c) Mechanical design of the multiwires

    实验室

    Laboratory

    束流模式

    Beam mode

    丝材料

    Wire material

    丝张力机制

    Wire tension mechanism

    GANILCW束流、脉冲型束流 CW/Pulsed镀金钨丝、碳丝 W/Au or carbon无张力(最高温度1 500 K) No tension (max temperature limited to 1 500 K)
    J-PARC脉冲型束流 Pulsed镀金钨丝、钛丝 W/Au or Ti foils弹簧张力 Spring tension
    SNS脉冲型束流 Pulsed镀金钨丝、碳丝 W/Au or carbon无张力 No tension
    CSNS脉冲型束流 Pulsed镀金钨丝、碳丝 W/Au or carbon弹簧张力 Spring tension
    CERN脉冲型束流 Pulsed镀金钨丝、碳丝 W/Au or carbon无张力 No tension
    Table 1. Multiwire designs in various laboratories
    项目 Item参数 Parameter
    粒子种类 Particle species12C5+
    能量 Energy / MeV⋅u-16.3
    流强 Current / μA10
    截面 Profile / mmσ=4
    占空比 Duty factor0.1
    长度 Duration / ms<10
    Table 2. Beam parameters for HIMMWW commissioning

    粒子种类

    Particle species

    能量

    Energy / MeV·u-1

    流强

    Current / μA

    丝直径

    Wire diameter / μm

    丝材料

    Wire material

    截面

    Profile / mm

    占空比

    Duty factor

    P330 mA32碳丝 Carbonσx=0.86, σy=1.291 Hz @50 μs
    P8003×1013 PPP10~200镀金钨丝 W/Auσx=25, σy=2550 Hz @0.2 μs
    Table 3. Beam parameters used in numerical simulation

    粒子种类

    Particle species

    能量

    Energy / keV·u-1

    流强

    Current / mA

    丝直径

    Wire diameter / μm

    丝材料

    Wire material

    截面

    Profile / mm

    束流模式

    Beam mode

    质子 Proton401.1550镀金钨丝 W/Auσx=5, σy=7DC
    Table 4. Beam parameters used in numerical simulation

    粒子种类

    Particle species

    能量

    Energy / MeV·u-1

    靶材料

    Wire material

    SEY (Experiment)SEY (GSI)SEY (IMP)
    质子 Proton1.6Au~1.21.21.174
    质子 Proton0.8Au~1.71.71.742
    238U68+8C400390393.961
    238U38+3.5C630±250407407.506
    Table 5. SEY computation results by different laboratories in comparison to experiment results

    粒子种类

    Particle species

    能量

    Energy / MeV·u-1

    靶材料

    Wire material

    最小粒子数

    Minimum particles

    最大粒子数

    Maximum particles

    质子 Proton9 300W/Au3.5×10104.7×1012
    质子 Proton500W/Au3.1×10104.1×1012
    238U35+835W/Au3.8×1065.1×108
    238U35+400W/Au3.1×1064.2×108
    Table 6. Minimum and maximum numbers of particles detected for MW
    Yongchun FENG, Yucong CHEN, Xincai KANG, Weilong LI, Kai TANG, Zulong ZHAO, Tiecheng ZHAO, Zhiguo XU, Ruishi MAO, Guoqing XIAO. Design and operation experiences of a multi-wire detector under high beam power environment[J]. NUCLEAR TECHNIQUES, 2024, 47(10): 100203
    Download Citation