• Chinese Optics Letters
  • Vol. 21, Issue 2, 022201 (2023)
Wenling Chen1, Chao Liu1, Yuqi Zou1, Zhihe Ren1, Yuanzhuo Xiang1, Fanchao Meng2, Yinsheng Xu3, Chong Hou1、4, Sheng Liang2, Lüyun Yang1, and Guangming Tao1、5、*
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics and Sport and Health Initiative, Optical Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2Key Laboratory on Luminescence and Optical Information Technology of Ministry of Education, National Physical Experiment Teaching Demonstration Center, Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
  • 3State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
  • 4School of Optics and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 5State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • show less
    DOI: 10.3788/COL202321.022201 Cite this Article Set citation alerts
    Wenling Chen, Chao Liu, Yuqi Zou, Zhihe Ren, Yuanzhuo Xiang, Fanchao Meng, Yinsheng Xu, Chong Hou, Sheng Liang, Lüyun Yang, Guangming Tao. Flexible omnidirectional reflective film for CO2 laser protection[J]. Chinese Optics Letters, 2023, 21(2): 022201 Copy Citation Text show less
    References

    [1] E. Khalkhal, M. Rezaei-Tavirani, M. R. Zali, Z. Akbari. The evaluation of laser application in surgery: a review article. J. Lasers Med. Sci., 10, S104(2019).

    [2] H. Arslan, B. Pehlivanoz. Effect of purification, dehydration, and coagulation processes on the optical parameters of biological tissues. Chin. Opt. Lett., 19, 011701(2021).

    [3] M. Shurgalin, C. Anastassiou. A new modality for minimally invasive CO2 laser surgery: flexible hollow-core photonic bandgap fibers. Biomed. Instrum. Technol., 42, 318(2008).

    [4] S. Mihashi, G. J. Jako, J. Incze, M. S. Strong, C. W. Vaughan. Laser surgery in otolaryngology: interaction of CO2 laser and soft tissue. Ann. N. Y. Acad. Sci., 267, 263(1976).

    [5] R. W. Ryan, T. Wolf, R. F. Spetzler, Y. Fink, M. C. Preul. Application of a flexible CO2 laser fiber for neurosurgery: laser-tissue interactions: laboratory investigation. J. Neurosurg., 112, 434(2010).

    [6] D. J. Fader, D. Ratner. Principles of CO2/erbium laser safety. Dermatol. Surg., 26, 235(2000).

    [7] C. Daggett, A. Daggett, E. McBurney, A. Murina. Laser safety: the need for protocols. Cutis, 106, 87(2020).

    [8] R. J. Rockwell. Laser accidents: reviewing thirty years of incidents: what are the concerns-old and new?. J. Laser Appl., 6, 203(1994).

    [9] W. Rath, C. Brettschneider. Industrial laser materials processing: a review of the origin, current status and an outlook. Laser Tech. J., 11, 23(2014).

    [10] C. Tan, L. Zhao, M. Chen, J. Cheng, Z. Yin, Q. Liu, H. Yang, W. Liao. Combined studies of surface evolution and crack healing for the suppression of negative factors during CO2 laser repairing of fused silica. Chin. Opt. Lett., 19, 041402(2021).

    [11] J. Huang, Y. Lu, Z. Wu, Y. Xie, C. He, J. Wu. Infrared broadband nonlinear optical limiting technology based on stimulated Brillouin scattering in As2Se3 fiber. Chin. Opt. Lett., 20, 031902(2022).

    [12] D. Ristau, M. Jupé, K. Starke. Laser damage thresholds of optical coatings. Thin Solid Films, 518, 1607(2009).

    [13] G. Ritt, S. Dengler, B. Eberle. Protection of optical systems against laser radiation. Proc. SPIE, 7481, 74810U(2009).

    [14] V. P. Stinson, S. Park, M. McLamb, G. Boreman, T. Hofmann. Photonic crystals with a defect fabricated by two-photon polymerization for the infrared spectral range. Optics, 2, 284(2021).

    [15] A. L. Goyal, A. Kumar. Recent advances and progresses in photonic devices for passive radiative cooling application: a review. J. Nanophotonics, 14, 030901(2020).

    [16] Á. Blanco, C. López. Photonic crystals: fundamentals and application. Annu. Rev. Nano Res., 1, 81(2006).

    [17] D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, S. V. Gaponenko. All-dielectric one-dimensional periodic structures for total omnidirectional reflection and partial spontaneous emission control. J. Light. Technol., 17, 2018(1999).

    [18] Y. Yue, J. P. Gong. Tunable one-dimensional photonic crystals from soft materials. J. Photochem. Photobiol. C, 23, 45(2015).

    [19] L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nat. Photonics, 8, 643(2014).

    [20] W. Yan, C. Dong, Y. Xiang, S. Jiang, A. Leber, G. Loke, W. Xu, C. Hou, S. Zhou, M. Chen, R. Hu, P. P. Shum, L. Wei, X. Jia, F. Sorin, X. Tao, G. Tao. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today, 35, 168(2020).

    [21] C. R. Petersen, M. B. Lotz, C. Markos, G. Woyessa, D. Furniss, A. B. Seddon, R. J. Taboryski, O. Bang. Thermo-mechanical dynamics of nanoimprinting anti-reflective structures onto small-core mid-IR chalcogenide fibers. Chin. Opt. Lett., 19, 030603(2021).

    [22] G. Tao, H. Ebendorff-Heidepriem, A. M. Stolyarov, S. Danto, J. V. Badding, Y. Fink, J. Ballato, A. F. Abouraddy. Infrared fibers. Adv. Opt. Photonics, 7, 379(2015).

    [23] T. Kohoutek, J. Orava, J. Prikryl, J. Mistrik, T. Wagner, M. Frumar. Near infrared quazi-omnidirectional reflector in chalcogenide glasses. Opt. Mater., 32, 154(2009).

    [24] J. A. Frantz, A. Clabeau, J. D. Myers, R. Y. Bekele, V. Q. Nguyen, J. S. Sanghera. Thermal tuning of arsenic selenide glass thin films and devices. Opt. Express, 28, 34744(2020).

    [25] G. Tao, S. Shabahang, H. Ren, F. Khalilzadeh-Rezaie, R. E. Peale, Z. Yang, X. Wang, A. F. Abouraddy. Robust multimaterial tellurium-based chalcogenide glass fibers for mid-wave and long-wave infrared transmission. Opt. Lett., 39, 4009(2014).

    [26] Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, R. Wang, G. Tao. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures. Opt. Express, 23, 23472(2015).

    [27] Y. Fink, N. Winn Joshua, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, E. L. Thomas. A dielectric omnidirectional reflector. Science, 282, 1679(1998).

    [28] J. N. Winn, Y. Fink, S. Fan, J. D. Joannopoulos. Omnidirectional reflection from a one-dimensional photonic crystal. Opt. Lett., 23, 1573(1998).

    [29] G. Tao, S. Shabahang, E.-H. Banaei, J. J. Kaufman, A. F. Abouraddy. Multimaterial preform coextrusion for robust chalcogenide optical fibers and tapers. Opt. Lett., 37, 2751(2012).

    [30] B. Zhang, C. Zhai, S. Qi, W. Guo, Z. Yang, A. Yang, X. Gai, Y. Yu, R. Wang, D. Tang, G. Tao, B. Luther-Davies. High-resolution chalcogenide fiber bundles for infrared imaging. Opt. Lett., 40, 4384(2015).

    Data from CrossRef

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    [1] 陶光明 Tao Guangming, 邹郁祁 Zou Yuqi, 刘超 Liu Chao, 任志禾 Ren Zhihe.

    Wenling Chen, Chao Liu, Yuqi Zou, Zhihe Ren, Yuanzhuo Xiang, Fanchao Meng, Yinsheng Xu, Chong Hou, Sheng Liang, Lüyun Yang, Guangming Tao. Flexible omnidirectional reflective film for CO2 laser protection[J]. Chinese Optics Letters, 2023, 21(2): 022201
    Download Citation