• High Power Laser and Particle Beams
  • Vol. 36, Issue 9, 092002 (2024)
Shijia Chen1,2, Hua Zhang1,2,*, Cangtao Zhou1,2,*, Hongbin Zhuo1,2..., Fuyuan Wu3 and Ramis Rafael4|Show fewer author(s)
Author Affiliations
  • 1College of Applied Sciences, Shenzhen University, Shenzhen 518060, China
  • 2Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Intense Laser Application Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, China
  • 3Laboratory of Laser Plasmas, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
  • 4E.T.S.I. Aeronautica y del Espacio, Universidad Politecnica de Madrid, P. Cardenal Cisneros 3, E-28040, Madrid, Spain
  • show less
    DOI: 10.11884/HPLPB202436.240106 Cite this Article
    Shijia Chen, Hua Zhang, Cangtao Zhou, Hongbin Zhuo, Fuyuan Wu, Ramis Rafael. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36(9): 092002 Copy Citation Text show less
    References

    [1] Gotchev O V, Chang Poyu, Knauer J P et al. Laser-driven magnetic-flux compression in high-energy-density plasmas[J]. Physical Review Letters, 103, 215004(2009).

    [2] McBride R D, Slutz S A, Vesey R A et al. Exploring magnetized liner inertial fusion with a semi-analytic model[J]. Physics of Plasmas, 23, 012705(2016).

    [3] McBride R D, Slutz S A, Jennings C A et al. Penetrating radiography of imploding and stagnating beryllium liners on the Z accelerator[J]. Physical Review Letters, 109, 135004(2012).

    [4] Slutz S A, Herrmann M C, Vesey R A et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field[J]. Physics of Plasmas, 17, 056303(2010).

    [5] Slutz S A, Gomez M R, Hansen S B et al. Enhancing performance of magnetized liner inertial fusion at the Z facility[J]. Physics of Plasmas, 25, 112706(2018).

    [6] Zhao Hailong, Xiao Bo, Wang Ganghua. Research progress of magnetized liner inertial fusion[J]. High Power Laser and Particle Beams, 32, 052001(2020).

    [7] Xiao Delong, Wang Xiaoguang, Wang Guanqiong. Theoretical research on key issues and design of integrated MagLIF experiments on the 7−8 MA facility[J]. High Power Laser and Particle Beams, 35, 022001(2023).

    [8] Gomez M R, Slutz S A, Jennings C A et al. Performance scaling in magnetized liner inertial fusion experiments[J]. Physical Review Letters, 125, 155002(2020).

    [9] Slutz S A, Vesey R A. High-gain magnetized inertial fusion[J]. Physical Review Letters, 108, 025003(2012).

    [10] Chen Shijia, Yang Xiaohu, Wu Fuyuan et al. Electrothermal effects on high-gain magnetized liner inertial fusion[J]. Plasma Physics and Controlled Fusion, 63, 115019(2021).

    [11] Velikovich A L, Giuliani J L, Zalesak S T. Magnetic flux and heat losses by diffusive, advective, and Nernst effects in magnetized liner inertial fusion-like plasma[J]. Physics of Plasmas, 22, 042702(2015).

    [12] Amendt P, Cerjan C, Hamza A et al. Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums[J]. Physics of Plasmas, 14, 056312(2007).

    [13] Dewald E L, Pino J E, Tipton R E et al. Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility[J]. Physics of Plasmas, 26, 072705(2019).

    [14] Milovich J L, Amendt P, Marinak M et al. Multimode short-wavelength perturbation growth studies for the National Ignition Facility double-shell ignition target designs[J]. Physics of Plasmas, 11, 1552-1568(2004).

    [15] Ramis R. One-dimensional Lagrangian implicit hydrodynamic algorithm for Inertial Confinement Fusion applications[J]. Journal of Computational Physics, 330, 173-191(2017).

    [16] Ramis R, Meyer-ter-Vehn J. MULTI-IFE—A one-dimensional computer code for Inertial Fusion Energy (IFE) target simulations[J]. Computer Physics Communications, 203, 226-237(2016).

    [17] Kemp A J, Meyer-ter-Vehn J. An equation of state code for hot dense matter, based on the QEOS description[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 415, 674-676(1998).

    [18] Eidmann K. Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas[J]. Laser and Particle Beams, 12, 223-244(1994).

    [19] Murakami M, Meyer-ter-Vehn J, Ramis R. Thermal X-ray emission from ion-beam-heated matter[J]. Journal of X-Ray Science and Technology, 2, 127-148(1990).

    [20] Chen Shijia, Ma Yanyun, Wu Fuyuan et al. Simulations on the multi-shell target ignition driven by radiation pulse in Z-pinch dynamic hohlraum[J]. Chinese Physics B, 30, 115201(2021).

    [21] Wu Fuyuan, Chu Yanyun, Ye Fan. One-dimensional numerical investigation on the formation of Z-pinch dynamic hohlraum using the code MULTI[J]. Acta Physica Sinica, 66, 215201(2017).

    [22] Braginskii S I. Transpt processes in a plasma[M]Leontovich M A. Reviews of Plasma Physics. New Yk: Consultants Bureau, 1965: 205311.

    [23] Zhao Hailong, Wang Ganghua, Xiao Bo. Evolution characteristic of axial magnetic field and Nernst effect in magnetized liner inertial fusion[J]. Acta Physica Sinica, 70, 135201(2021).

    Shijia Chen, Hua Zhang, Cangtao Zhou, Hongbin Zhuo, Fuyuan Wu, Ramis Rafael. Nernst effects study using dopant layer on magnetized target[J]. High Power Laser and Particle Beams, 2024, 36(9): 092002
    Download Citation