• Photonics Research
  • Vol. 11, Issue 9, 1509 (2023)
Yang Luo1、†, Hongyi Huang1、†, Lei Wan1、2、5、*, Weiping Liu1, and Zhaohui Li3、4、6、*
Author Affiliations
  • 1Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou 510632, China
  • 2International Institute for Innovative Design and Intelligent Manufacturing, Tianjin University, Shaoxing 312000, China
  • 3Guangdong Provincial Key Laboratory of Optoelectronic Information Processing Chips and Systems, Sun Yat-sen University, Guangzhou 510275, China
  • 4Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
  • 5e-mail: wanlei@jnu.edu.cn
  • 6e-mail: lzhh88@sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.494008 Cite this Article Set citation alerts
    Yang Luo, Hongyi Huang, Lei Wan, Weiping Liu, Zhaohui Li. Heterogeneous optomechanical crystal cavity coupled by a wavelength-scale mechanical waveguide[J]. Photonics Research, 2023, 11(9): 1509 Copy Citation Text show less
    References

    [1] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [2] K. Fang, M. H. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [3] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 7, 509-514(2012).

    [4] R. Riedinger, A. Wallucks, I. Marinković, C. Löschnauer, M. Aspelmeyer, S. Hong, S. Gröblacher. Remote quantum entanglement between two micromechanical oscillators. Nature, 556, 473-477(2018).

    [5] K. Stannigel, P. Rabl, A. S. Sørensen, P. Zoller, M. D. Lukin. Optomechanical transducers for long-distance quantum communication. Phys. Rev. Lett., 105, 220501(2010).

    [6] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [7] J. T. Hill, A. H. Safavi-Naeini, J. Chan, O. Painter. Coherent optical wavelength conversion via cavity optomechanics. Nat. Commun., 3, 1196(2012).

    [8] A. H. Safavi-Naeini, J. Chan, J. T. Hill, T. P. M. Alegre, A. Krause, O. Painter. Observation of quantum motion of a nanomechanical resonator. Phys. Rev. Lett., 108, 033602(2012).

    [9] D. K. Biegelsen. Photoelastic tensor of silicon and the volume dependence of the average gap. Phys. Rev. Lett., 32, 1196(1974).

    [10] R. Newnham, V. Sundar, R. Yimnirun, J. Su, Q. Zhang. Electrostriction: nonlinear electromechanical coupling in solid dielectrics. J. Phys. Chem. B, 101, 10141-10150(1997).

    [11] R. Van Laer, R. N. Patel, T. P. McKenna, J. D. Witmer, A. H. Safavi-Naeini. Electrical driving of X-band mechanical waves in a silicon photonic circuit. APL Photon., 3, 086102(2018).

    [12] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett., 101, 081115(2012).

    [13] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 462, 78-82(2009).

    [14] X. Sun, X. Zhang, H. X. Tang. High-Q silicon optomechanical microdisk resonators at gigahertz frequencies. Appl. Phys. Lett., 100, 173116(2012).

    [15] A. Cleland, M. Pophristic, I. Ferguson. Single-crystal aluminum nitride nanomechanical resonators. Appl. Phys. Lett., 79, 2070-2072(2001).

    [16] L. Fan, X. Sun, C. Xiong, C. Schuck, H. X. Tang. Aluminum nitride piezo-acousto-photonic crystal nanocavity with high quality factors. Appl. Phys. Lett., 102, 153507(2013).

    [17] H. Li, S. A. Tadesse, Q. Liu, M. Li. Nanophotonic cavity optomechanics with propagating acoustic waves at frequencies up to 12 GHz. Optica, 2, 826-831(2015).

    [18] C. Xiong, W. H. Pernice, X. Sun, C. Schuck, K. Y. Fong, H. X. Tang. Aluminum nitride as a new material for chip-scale optomechanics and nonlinear optics. New J. Phys., 14, 095014(2012).

    [19] K. C. Balram, M. Davanço, J. Y. Lim, J. D. Song, K. Srinivasan. Moving boundary and photoelastic coupling in GaAs optomechanical resonators. Optica, 1, 414-420(2014).

    [20] S. Combrié, A. De Rossi, Q. V. Tran, H. Benisty. GaAs photonic crystal cavity with ultrahigh Q: microwatt nonlinearity at 1.55 μm. Opt. Lett., 33, 1908-1910(2008).

    [21] G. Shambat, B. Ellis, M. A. Mayer, A. Majumdar, E. E. Haller, J. Vučković. Ultra-low power fiber-coupled gallium arsenide photonic crystal cavity electro-optic modulator. Opt. Express, 19, 7530-7536(2011).

    [22] S. Hönl, Y. Popoff, D. Caimi, A. Beccari, T. J. Kippenberg, P. Seidler. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity. Nat. Commun., 13, 2065(2022).

    [23] M. Mitchell, A. C. Hryciw, P. E. Barclay. Cavity optomechanics in gallium phosphide microdisks. Appl. Phys. Lett., 104, 141104(2014).

    [24] K. Schneider, Y. Baumgartner, S. Hönl, P. Welter, H. Hahn, D. J. Wilson, L. Czornomaz, P. Seidler. Optomechanics with one-dimensional gallium phosphide photonic crystal cavities. Optica, 6, 577-584(2019).

    [25] B. Desiatov, A. Shams-Ansari, M. Zhang, C. Wang, M. Lončar. Ultra-low-loss integrated visible photonics using thin-film lithium niobate. Optica, 6, 380-384(2019).

    [26] W. Jiang, C. J. Sarabalis, Y. D. Dahmani, R. N. Patel, F. M. Mayor, T. P. McKenna, R. Van Laer, A. H. Safavi-Naeini. Efficient bidirectional piezo-optomechanical transduction between microwave and optical frequency. Nat. Commun., 11, 1166(2020).

    [27] A. J. Mercante, S. Shi, P. Yao, L. Xie, R. M. Weikle, D. W. Prather. Thin film lithium niobate electro-optic modulator with terahertz operating bandwidth. Opt. Express, 26, 14810-14816(2018).

    [28] L. Cai, A. Mahmoud, M. Khan, M. Mahmoud, T. Mukherjee, J. Bain, G. Piazza. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photon. Res., 7, 1003-1013(2019).

    [29] A. Siddiqui, R. H. Olsson, M. Eichenfield. Lamb wave focusing transducer for efficient coupling to wavelength-scale structures in thin piezoelectric films. J. Microelectromech. Syst., 27, 1054-1070(2018).

    [30] M. Xu, M. He, H. Zhang, J. Jian, Y. Pan, X. Liu, L. Chen, X. Meng, H. Chen, Z. Li. High-performance coherent optical modulators based on thin-film lithium niobate platform. Nat. Commun., 11, 3911(2020).

    [31] A. H. Safavi-Naeini, O. Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic–photonic crystal slab. Opt. Express, 18, 14926-14943(2010).

    [32] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. Van Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [33] L. Wan, Z. Yang, W. Zhou, M. Wen, T. Feng, S. Zeng, D. Liu, H. Li, J. Pan, N. Zhu. Highly efficient acousto-optic modulation using nonsuspended thin-film lithium niobate-chalcogenide hybrid waveguides. Light Sci. Appl., 11, 145(2022).

    [34] R. Qi, Q. Xu, N. Wu, K. Cui, W. Zhang, Y. Huang. Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass. Photon. Res., 9, 893-898(2021).

    [35] J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun., 5, 4452(2014).

    [36] Y. D. Dahmani, C. J. Sarabalis, W. Jiang, F. M. Mayor, A. H. Safavi-Naeini. Piezoelectric transduction of a wavelength-scale mechanical waveguide. Phys. Rev. Appl., 13, 024069(2020).

    [37] L. Shao, M. Yu, S. Maity, N. Sinclair, L. Zheng, C. Chia, A. Shams-Ansari, C. Wang, M. Zhang, K. Lai. Microwave-to-optical conversion using lithium niobate thin-film acoustic resonators. Optica, 6, 1498-1505(2019).

    Yang Luo, Hongyi Huang, Lei Wan, Weiping Liu, Zhaohui Li. Heterogeneous optomechanical crystal cavity coupled by a wavelength-scale mechanical waveguide[J]. Photonics Research, 2023, 11(9): 1509
    Download Citation