[1] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2015, 7(1): 19-29.
[2] WANG F, HARINDINTWALI J D, YUAN Z Z, et al. Technologies and perspectives for achieving carbon neutrality[J]. The Innovation, 2021, 2(4): 100180.
[4] ZHENG H F, HAN X, GUO W B, et al. Recent developments and challenges of Li-rich Mn-based cathode materials for high-energy lithium-ion batteries[J]. Materials Today Energy, 2020, 18: 100518.
[5] XIANG K, LI S J, LI Y B, et al. Interactions of Li2O volatilized from ternary lithium-ion battery cathode materials with mullite saggar materials during calcination[J]. Ceramics International, 2022, 48(16): 23341-23347.
[6] CAO D K, LI S J, LI Y B, et al. Thermal shock stability and corrosion resistance to LiNixCoyMn1-x-yO2 of mullite-cordierite-CA6 saggar materials[J]. International Journal of Applied Ceramic Technology, 2024: 1-13.
[7] SUN Z H, YU J, ZHAO H Z, et al. Effects of partial substitution of calcium alumino-titanate on the properties and microstructure of mullite-cordierite composites[J]. Ceramics International, 2022, 48(24): 36056-36065.
[8] DING D F, CHEN L G, HU S H, et al. Interactions between potassium aluminosilicates and Li-ion battery cathode materials during calcination[J]. Journal of the Australian Ceramic Society, 2019, 55(4): 1109-1113.
[10] DUAN X K, ZHENG H, CHEN Y Q, et al. Study on the corrosion resistance of cordierite-mullite and SiC refractories to Li-ion ternary cathode materials[J]. Ceramics International, 2020, 46(3): 2829-2835.
[11] ZHAI P T, CHEN L G, YIN Y M, et al. Interactions between mullite saggar refractories and Li-ion battery cathode materials during calcination[J]. Journal of the European Ceramic Society, 2018, 38(4): 2145-2151.
[12] ZHAI P T, CHEN L G, HU S H, et al. Comparison of interactions of MgO-based refractories with Li-ion battery cathode materials during calcination[J]. International Journal of Applied Ceramic Technology, 2019, 16(1): 287-293.
[13] WANG H L, LI S J, LI Y B, et al. Synthesizing low-cost, high-corrosion-resistant refractory kiln furniture for the calcination of Li-ion battery cathode materials[J]. Ceramics International, 2021, 47(3): 4049-4054.
[15] DING D F, YE G T, CHEN L G. Superior corrosion resistance KAlSi2O6-containing materials for calcining Li-ion battery cathode materials[J]. Corrosion Science, 2019, 157: 324-330.
[16] SUN Z H, YU J, ZHAO H Z, et al. Damage mechanism and design optimization of mullite-cordierite saggar used as the sintering cathode material in Li-ion batteries[J]. Journal of the European Ceramic Society, 2022, 42(13): 6255-6263.
[19] REN B, SANG S B, LI Y W, et al. Correlation of pore structure and alkali vapor attack resistance of bauxite-SiC composite refractories[J]. Ceramics International, 2015, 41(10): 14674-14683.
[20] GAN C Q, ZHANG H, ZHAO H Z, et al. Effect of aggregate particle content on sintering and corrosion resistance of hibonite-cordierite saggar[J]. Ceramics International, 2023, 49(1): 907-917.