• Matter and Radiation at Extremes
  • Vol. 9, Issue 4, 047402 (2024)
Q. K. Liu1,2, L. Deng1,2,3, Q. Wang2, X. Zhang1,2..., F. Q. Meng1,2, Y. P. Wang1,2, Y. Q. Gao4, H. B. Cai2,5,6 and S. P. Zhu1,2|Show fewer author(s)
Author Affiliations
  • 1Graduate School, China Academy of Engineering Physics, Beijing 100088, China
  • 2Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
  • 3School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China
  • 4Shanghai Institute of Laser Plasma, Shanghai 201800, China
  • 5HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871, China
  • 6School of Physics, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.1063/5.0189529 Cite this Article
    Q. K. Liu, L. Deng, Q. Wang, X. Zhang, F. Q. Meng, Y. P. Wang, Y. Q. Gao, H. B. Cai, S. P. Zhu. Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses[J]. Matter and Radiation at Extremes, 2024, 9(4): 047402 Copy Citation Text show less
    References

    [1] R.Betti, E. M.Campbell, D.Cao, A. R.Christopherson, G. W.Collins, T. J. B.Collins, C.Dorrer, M.Farrell, R. K.Follett, D. H.Froula, V. N.Goncharov, V.Gopalaswamy, D. R.Harding, J. P.Knauer, O. M.Mannion, J. A.Marozas, S. F. B.Morse, J. P.Palastro, P. B.Radha, S. P.Regan, M. J.Rosenberg, T. C.Sangster, R.Shah, A. A.Solodov, C.Sorce, M. S.Wei, J. D.Zuegel. Direct-drive laser fusion: Status, plans and future. Philos. Trans. R. Soc., A, 379, 20200011(2021).

    [2] K. S.Anderson, R.Betti, T. R.Boehly, T. J. B.Collins, R. S.Craxton, J. A.Delettrez, V. N.Goncharov, D. R.Harding, S. X.Hu, J. P.Knauer, W. L.Kruer, J. A.Marozas, A. V.Maximov, R. L.McCrory, P. W.McKenty, D. D.Meyerhofer, D. T.Michel, J. F.Myatt, P. B.Radha, S. P.Regan, T. C.Sangster, A. J.Schmitt, W.Seka, J. D.Sethian, R. W.Short, S.Skupsky, A. A.Solodov, J. M.Soures, C.Stoeckl, K.Tanaka, W.Theobald, J. D.Zuegel. Direct-drive inertial confinement fusion: A review. Phys. Plasmas, 22, 110501(2015).

    [3] R.Betti, D. H.Froula, M. R.Gomez, O. A.Hurricane, P. K.Patel, S. P.Regan, S. A.Slutz, M. A.Sweeney. Physics principles of inertial confinement fusion and U.S. program overview. Rev. Mod. Phys., 95, 025005(2023).

    [4] B.Eliasson, C. S.Liu, V. K.Tripathi. High-Power Laser-Plasma Interaction(2020).

    [5] D. S.Montgomery. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas, 23, 055601(2016).

    [6] B.Bezzerides, D. F.DuBois, H. X.Vu. Transient enhancement and detuning of laser-driven parametric instabilities by particle trapping. Phys. Rev. Lett., 86, 4306-4309(2001).

    [7] B. J.Albright, B.Bergen, K. J.Bowers, S. M.Finnegan, R. K.Kirkwood, J. L.Kline, J.Milovich, D. S.Montgomery, H. A.Rose, L.Yin. Stimulated scattering in laser driven fusion and high energy density physics experiments. Phys. Plasmas, 21, 092707(2014).

    [8] B.Afeyan, S.Hüller. Optimal control of laser plasma instabilities using spike trains of uneven duration and delay (STUD pulses) for ICF and IFE. EPJ Web Conf., 59, 05009(2013).

    [9] B.Afeyan, B. J.Albright, L.Yin. Control of stimulated Raman scattering in the strongly nonlinear and kinetic regime using spike trains of uneven duration and delay. Phys. Rev. Lett., 113, 045002(2014).

    [10] B.Afeyan, S.Hüller. Simulations of drastically reduced SBS with laser pulses composed of a spike train of uneven duration and delay (STUD pulses). EPJ Web Conf., 59, 05010(2013).

    [11] L. H.Cao, L.Hao, B.Li, Z. J.Liu, J.Xiang, C. Y.Zheng. Faraday effect on stimulated Raman scattering in the linear region. Plasma Phys. Controlled Fusion, 60, 045008(2018).

    [12] L. H.Cao, Z. J.Liu, C. Y.Zheng, Y. Z.Zhou. Suppression of autoresonant stimulated Raman scattering in transversely weakly magnetized plasmas. Plasma Phys. Controlled Fusion, 63, 055015(2021).

    [13] X.Guo, Y.Guo, K.Lan, B.Shen, D.Xu, X.Zhang. Suppression of stimulated Raman scattering by angularly incoherent light, towards a laser system of incoherence in all dimensions of time, space, and angle. Matter Radiat. Extremes, 8, 035902(2023).

    [14] X.Li, Z.Liu, H.Ma, Z.-M.Sheng, C.Wang, P.Wang, W.Wang, S.-M.Weng, S. H.Yew, J.Zhang. Parametric instabilities and hot electron generation in the interactions of broadband lasers with inhomogeneous plasmas. Nucl. Fusion, 63, 126010(2023).

    [15] M.Chen, Z.Sheng, S.Weng, Y.Zhao, J.Zheng, H.Zhuo. Stimulated Raman scattering excited by incoherent light in plasma. Matter Radiat. Extremes, 2, 190-196(2017).

    [16] X.-J.Bai, H.-H.Ma, Z.-M.Sheng, S.-M.Weng, Y.Zhao. Mitigation of laser plasma parametric instabilities with broadband lasers. Rev. Mod. Plasma Phys., 7, 1(2022).

    [17] P.Gibbon, S.Kawata, X. F.Li, H. H.Ma, Z. M.Sheng, S. M.Weng, S. H.Yew, J.Zhang. Mitigating parametric instabilities in plasmas by sunlight-like lasers. Matter Radiat. Extremes, 6, 055902(2021).

    [18] J. I.Karush, J. J.Thomson. Effects of finite-bandwidth driver on the parametric instability. Phys. Fluids, 17, 1608(1974).

    [19] X.Chen, Y.Cui, P.Du, W.Feng, S.Fu, Y.Gao, Y.Hua, X.Huang, L.Ji, F.Li, X.Li, D.Liu, J.Liu, J.Liu, W.Ma, W.Pei, D.Rao, C.Shan, H.Shi, Z.Sui, X.Sun, T.Wang, L.Xia, T.Zhang, X.Zhao, J.Zhu. Development of low-coherence high-power laser drivers for inertial confinement fusion. Matter Radiat. Extremes, 5, 065201(2020).

    [20] R.Betti, E. M.Campbell, D.Cao, A. R.Christopherson, J. A.Delettrez, D. H.Edgell, R.Epstein, C. J.Forrest, M.Gatu Johnson, V.Gopalaswamy, J.Howard, D.Patel, J. L.Peebles, S. P.Regan, M. J.Rosenberg, W.Seka, R.Simpson, A. A.Solodov, C.Stoeckl, W.Theobald, M. S.Wei. Direct measurements of DT fuel preheat from hot electrons in direct-drive inertial confinement fusion. Phys. Rev. Lett., 127, 055001(2021).

    [21] J.Bates, R.Follett, D.Kehne, T.Kessler, R.Lehmberg, J.Myatt, M.Myers, S.Obenschain, J.Shaw, J.Weaver, M.Wolford. Suppressing cross-beam energy transfer with broadband lasers. High Energy Density Phys., 36, 100772(2020).

    [22] L.-h.Cao, Y.Chen, Z.Liu, C.Xiao, C.Zheng. Effects of frequency-modulated pump on stimulated Brillouin scattering in inhomogeneous plasmas. Plasma Phys. Controlled Fusion, 65, 125002(2023).

    [23] C.Dorrer, R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw. Thresholds of absolute instabilities driven by a broadband laser. Phys. Plasmas, 26, 062111(2019).

    [24] R. K.Follett, D. H.Froula, J. F.Myatt, J. P.Palastro, J. G.Shaw, H.Wen. Thresholds of absolute two-plasmon-decay and stimulated Raman scattering instabilities driven by multiple broadband lasers. Phys. Plasmas, 28, 032103(2021).

    [25] C.-S.Liu, C.Ren, Z.-M.Sheng, S.-M.Weng, L.-L.Yu, Y.Zhao, J.Zheng. Effects of large laser bandwidth on stimulated Raman scattering instability in underdense plasma. Phys. Plasmas, 22, 052119(2015).

    [26] R. K.Follett, D. H.Froula, A. V.Maximov, J. P.Palastro, F. S.Tsung, H.Wen. Suppressing the enhancement of stimulated Raman scattering in inhomogeneous plasmas by tuning the modulation frequency of a broadband laser. Phys. Plasmas, 28, 042109(2021).

    [27] H. B.Cai, Y. Q.Gao, Q. K.Liu, Q.Wang, E. H.Zhang, W. S.Zhang, S. P.Zhu. Non-linear stimulated Raman back-scattering burst driven by a broadband laser. Phys. Plasmas, 29, 102105(2022).

    [28] X. Z.Li, F. Q.Shao, C. Z.Xiao, Y.Yin, H. Y.Zhou, H. B.Zhuo, D. B.Zou. Numerical study of bandwidth effect on stimulated Raman backscattering in nonlinear regime. Phys. Plasmas, 25, 062703(2018).

    [29] M.Chen, C.Ren, Z.Sheng, S.Weng, J.Zhang, Y.Zhao, J.Zheng, H.Zhuo. Effective suppression of parametric instabilities with decoupled broadband lasers in plasma. Phys. Plasmas, 24, 112102(2017).

    [30] R. H.Lehmberg, S. P.Obenschainet?al.. Use of induced spatial incoherence for uniform illumination of laser fusion targets. Conference on Lasers and Electro-Optics(1983).

    [31] J. W.Goodman. Wiley Series in Pure and Applied Optics. Statistical Optics(2015).

    [32] T.Borger, C.Dorrer, S.Herman, E. M.Hill, M.Spilatro. Broadband sum-frequency generation of spectrally incoherent pulses. Opt. Express, 29, 16135(2021).

    [33] H.An, Z.Fang, W.Feng, S.Fu, Y.Gao, Z.He, G.Jia, H.Shi, J.Sun, C.Wang, P.Wang, R.Wang, W.Wang, L.Xia, Z.Xie, J.Xiong, S.Zheng. Backward scattering of laser plasma interactions from hundreds-of-joules broadband laser on thick target. Matter Radiat. Extremes, 9, 015602(2024).

    [34] H.An, Y.Cui, Z.Fang, W.Feng, S.Fu, Y.Gao, X.Huang, L.Ji, N.Kang, A.Lei, H.Liu, Z.Liu, Y.Tu, L.Wang, R.Wang, W.Wang, L.Xia, Z.Xie, J.Xiong, G.Xu, X.Zhao, Y.Zhao, C.Zheng, S.Zhou, X.Zhou. Reduction of backward scatterings at the low-coherence kunwu laser facility. Phys. Rev. Lett., 132, 035102(2024).

    [35] H.-b.Cai, X.-x.Yan, P.-l.Yao, S.-p.Zhu. Hybrid fluid–particle modeling of shock-driven hydrodynamic instabilities in a plasma. Matter Radiat. Extremes, 6, 035901(2021).

    [36] B.Bezzerides, J. A.Cobble, D. F.DuBois, R. P.Johnson, J. L.Kline, D. S.Montgomery, H. A.Rose, H. X.Vu, L.Yin. Observation of a transition from fluid to kinetic nonlinearities for Langmuir waves driven by stimulated Raman backscatter. Phys. Rev. Lett., 94, 175003(2005).

    [37] J. E.Fahlen, W. B.Mori, F. S.Tsung, B. J.Winjum. Effects of plasma wave packets and local pump depletion in stimulated Raman scattering. Phys. Rev. E, 81, 045401(2010).

    [38] W. B.Mori, A.Tableman, F. S.Tsung, B. J.Winjum. Interactions of laser speckles due to kinetic stimulated Raman scattering. Phys. Plasmas, 26, 112701(2019).

    [39] J. M.Dawson, W. L.Kruer, R. N.Sudan. Trapped-particle instability. Phys. Rev. Lett., 23, 838-841(1969).

    [40] T.O’Neil. Collisionless damping of nonlinear plasma oscillations. Phys. Fluids, 8, 2255(1965).

    [41] R. L.Berger, S.Brunner, B. I.Cohen, L.Hausammann, E. J.Valeo. Kinetic simulations and reduced modeling of longitudinal sideband instabilities in non-linear electron plasma waves. Phys. Plasmas, 21, 102104(2014).

    [42] S. S.Ban, L. H.Cao, Q. S.Feng, Y.Jiang, Z. J.Liu, Y. X.Wang, R.Xie, T.Yang, S. T.Zhang, C. Y.Zheng, Y. Z.Zhou. Saturation of trapped particle instability induced by vortex-merging in electron plasma waves. Plasma Phys. Controlled Fusion, 62, 095009(2020).

    [43] X. T.He, C. S.Liu, Z. J.Liu, Q.Wang, Y. X.Wang, C. Y.Zheng. Nonlinear transition from convective to absolute Raman instability with trapped electrons and inflationary growth of reflectivity. Phys. Plasmas, 25, 100702(2018).

    [44] B.Bezzerides, E.Dodd, D.DuBois, H.Vu, L.Yin. Nonlinear spectral signatures and spatiotemporal behavior of stimulated Raman scattering from single laser speckles. Phys. Rev. Lett., 95, 245003(2005).

    [45] B. J.Albright, K. J.Bowers, W.Daughton, H. A.Rose, L.Yin. Saturation of backward stimulated scattering of a laser beam in the kinetic regime. Phys. Rev. Lett., 99, 265004(2007).

    [46] S.Brunner, E. J.Valeo. Trapped-particle instability leading to bursting in stimulated Raman scattering simulations. Phys. Rev. Lett., 93, 145003(2004).

    [47] M.Ma?ek, K.Rohlena. Stimulated Raman scattering in the presence of trapped particle instability. Commun. Nonlinear Sci. Numer. Simul., 13, 125-129(2008).

    [48] B. J.Albright, B.Bergen, K. J.Bowers, J. C.Fernández, J. L.Kline, D. S.Montgomery, H. A.Rose, L.Yin. Onset and saturation of backward stimulated Raman scattering of laser in trapping regime in three spatial dimensions. Phys. Plasmas, 16, 113101(2009).

    [49] B. J.Albright, B.Bergen, K. J.Bowers, R. K.Kirkwood, H. A.Rose, L.Yin. Self-organized bursts of coherent stimulated Raman scattering and hot electron transport in speckled laser plasma media. Phys. Rev. Lett., 108, 245004(2012).

    [50] B. J.Albright, B.Bergen, K. J.Bowers, R. K.Kirkwood, J. L.Kline, P.Michel, D. S.Montgomery, H. A.Rose, L.Yin. Self-organized coherent bursts of stimulated Raman scattering and speckle interaction in multi-speckled laser beams. Phys. Plasmas, 20, 012702(2013).

    [51] B. J.Albright, R. F.Bird, A.Seaton, D. J.Stark, L.Yin. Forward and backward stimulated Raman scattering in multi-speckled beams: Density dependence and effects on cross-beam energy transfer. Phys. Plasmas, 28, 022702(2021).

    [52] L.Chacon, G.Chen, L.Green, B. M.Haines, T. B.Nguyen, D. J.Stark, L.Yin. Nonlinear models for coupling the effects of stimulated Raman scattering to inertial confinement fusion codes. Phys. Plasmas, 30, 042714(2023).

    Q. K. Liu, L. Deng, Q. Wang, X. Zhang, F. Q. Meng, Y. P. Wang, Y. Q. Gao, H. B. Cai, S. P. Zhu. Electron kinetic effects in back-stimulated Raman scattering bursts driven by broadband laser pulses[J]. Matter and Radiation at Extremes, 2024, 9(4): 047402
    Download Citation