• Optoelectronics Letters
  • Vol. 18, Issue 4, 210 (2022)
Bo CHAI1、*, Yajing LI2, and Yukun BAI1
Author Affiliations
  • 1Engineering Research Center of Communication Devices and Technology, Ministry of Education, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
  • 2Shanghai University, Shanghai 200072, China
  • show less
    DOI: 10.1007/s11801-022-1134-6 Cite this Article
    CHAI Bo, LI Yajing, BAI Yukun. A wide-band continuous-beam-scanning leaky-wave antenna with a stable gain fed by spoof surface plasmon polaritons[J]. Optoelectronics Letters, 2022, 18(4): 210 Copy Citation Text show less
    References

    [1] KAIVANTO E K, BERG M, SALONEN E, et al. Wearable circularly polarized antenna for personal satellite communication and navigation[J]. IEEE transactions on antennas propagation, 2011, 59(12):4490-4496.

    [2] HAO Z C, ZHANG J, ZHAO L. A compact leaky-wave antenna using a planar spoof surface plasmon polariton structure[J]. International journal of RF and micro-wave computer-aided engineering, 2019, 29(5) : 21617-21623.

    [3] CHEN H, MA H, LI Y, et al. Wideband frequency scanning spoof surface plasmon polariton planar antenna based on transmissive phase gradient metasurface[J]. IEEE antennas and wireless propagation letters, 2018, 17(3):463-467.

    [4] FAN Y, WANG J, LI Y, et al. Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface[J]. IEEE antennas and wireless propagation letters, 2017, 17(1):203-208.

    [5] LIAO Z, ZHAO J, PAN B C, et al. Broadband transition between microstrip line and conformal surface plasmon waveguide[J]. Journal of physics D-applied physics, 2014, 47(31):315103.

    [6] PATEL A M, GRBIC A. A printed peaky-wave antenna based on a sinusoidally-modulated reactance surface[J]. IEEE transactions on antennas propagation, 2011, 59(6):2087-2096.

    [7] YIN J Y, REN J, ZHANG Q, et al. Frequency controlled broad-angle beam scanning of patch array fed by spoof surface plasmon polaritons[J]. IEEE transactions on antennas propagation, 2016, 64(12):5181-5189.

    [8] YI H, QU S W, BAI X, et al. Antenna array excited by spoof planar plasmonic waveguide[J]. IEEE transactions on antennas propagation, 2014, 13:1227-1230.

    [9] ZHANG Q L, ZHANG Q, CHEN Y. High-efficiency circularly polarised leaky-wave antenna fed by spoof surface plasmon polaritons[J]. IET microwaves antennas and propagation, 2018, 12(10):1639-1644.

    [10] JIA Y Y, CUI T J. Frequency-controlled beam scanning array fed by spoof surface plasmon polaritons[C]//2017 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, July 9-14, 2017, San Diego, CA, USA. New York:IEEE, 2017:1271-1272.

    [11] PORS A, MORENO E, MARTIN L, et al. Localized spoof plasmons arise while texturing closed surfaces[J]. Physical review letters, 2012, 108(22):223905-223910.

    [12] XU J J, JIANG X, ZHANG H C, et al. Diffraction radiation based on an anti-symmetry structure of spoof surface-plasmon waveguide[J]. Applied physics letters, 2017, 110(2):021118-021122.

    [13] LIU L, CHEN M, CAI J, et al. Single beam leaky wave antenna with lateral continuous scanning functionality based on spoof surface plasmon transmission line[J]. IEEE access, 2019, 7:25225-25231.

    [14] BAI Y K, CHENG A F. A spoof surface plasmon leaky wave antenna with circular polarization[J]. International journal of RF and microwave computer-aided engineering, 2020, 30(8):22248-22254.

    [15] ZHONG T, ZHANG H. Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward[J]. Chinese physics B, 2020, 29(09):369-374.

    [16] ZHU A Q, LIAO X, WANG B, et al. Compact spoof surface plasmon polariton leaky wave antenna with consistent cain[J]. Microwave and optical technology letters, 2021, 63(9):2430-2435.

    CHAI Bo, LI Yajing, BAI Yukun. A wide-band continuous-beam-scanning leaky-wave antenna with a stable gain fed by spoof surface plasmon polaritons[J]. Optoelectronics Letters, 2022, 18(4): 210
    Download Citation