• Frontiers of Optoelectronics
  • Vol. 10, Issue 4, 395 (2017)
Yonglun TANG1, Haibo REN2, and Jiarui HUANG2、*
Author Affiliations
  • 1Department of Fundamental Course Teaching, Anhui Technical College of Industry and Economy, Hefei 230051, China
  • 2College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
  • show less
    DOI: doi 10.1007/s12200-017-0735-3 Cite this Article
    Yonglun TANG, Haibo REN, Jiarui HUANG. Synthesis of porous TiO2 nanowires and their photocatalytic properties[J]. Frontiers of Optoelectronics, 2017, 10(4): 395 Copy Citation Text show less
    References

    [1] Khan S B, Hou M J, Shuang S, Zhang Z J. Morphological influence of TiO2 nanostructures (nanozigzag, nanohelics and nanorod) on photocatalytic degradation of organic dyes. Applied Surface Science, 2017, 400: 184-193

    [2] Edy R, Zhao Y T, Huang G S, Shi J J, Zhang J, Solovev A A, Mei Y F. TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis. Progress in Natural Science-Materials International, 2016, 26(5): 493-497

    [3] Cheng G, Xu F F, Xiong J Y, Tian F, Ding J, Stadler F J, Chen R. Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-carbon materials hybrids. Advanced Powder Technology, 2016, 27(5): 1949-1962

    [4] Liu W G, Xu Y M, Zhou W, Zhang X F. A facile synthesis of hierarchically porous TiO2 microspheres with carbonaceous species for visible-light photocatalysis. Journal of Materials Science & Technology, 2016, 33(1): 39-46

    [5] Zhang J Y, Li C X, Wang D Y, Zhang C, Liang L, Zhou X. The effect of different TiO2 nanoparticles on the release and transformation of mercury in sediment. Journal of Soils and Sediments, 2017, 17(2): 536-542

    [6] Gaikwad M A, Mane A A, Desai S P, Moholkar A V. Template-free TiO2 photoanodes for dye-sensitized solar cell via modified chemical route. Journal of Colloid and Interface Science, 2017, 488: 269-276

    [7] Qiu Y, Ouyang F. Fabrication of TiO2 hierarchical architecture assembled by nanowires with anatase/TiO2(B) phase-junctions for efficient photocatalytic hydrogen production. Applied Surface Science, 2017, 403: 691-698

    [8] Ma L Q, Xu W C, Zhu S L, Cui Z D, Yang X J, Inoue A. Anatase TiO2 hierarchical nanospheres with enhanced photocatalytic activity for degrading methyl orange. Materials Chemistry and Physics, 2016, 170: 186-192

    [9] oriparti S, Miele E, Prato M, Scarpellini A, Marras S, Monaco S, Toma A, Messina G C, Alabastri A, De Angelis F. Direct synthesis of carbon-doped TiO2-bronze nanowires as anode materials for high performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2015, 7(45): 25139-25146

    [10] Li X L, Bassi P S, Boix P P, Fang Y N, Wong L H. Revealing the role of TiO2 surface treatment of hematite nanorods photoanodes for solar water splitting. ACS Applied Materials & Interfaces, 2015, 7 (31): 16960-16966

    [11] Praveen Kumar D, Lakshmana Reddy N, Karthikeyan M, Chinnaiah N, Bramhaiah V, Durga Kumari V, Shankar M V. Synergistic effect of nanocavities in anatase TiO2 nanobelts for photocatalytic degradation of methyl orange dye in aqueous solution. Journal of Colloid and Interface Science, 2016, 477: 201-208

    [12] Hejazi S, Nguyen N T, Mazare A, Schmuki P. Aminated TiO2 nanotubes as a photoelectrochemical water splitting photoanode. Catalysis Today, 2017, 281: 189-197

    [13] YuWJ, Liu YM, Cheng N, Cai B, Kondamareddy K K, Kong S, Xu S, Liu W, Zhao X Z. Ultra-thin anatase TiO2 nanosheets with admirable structural stability for advanced reversible lithium storage and cycling performance. Electrochimica Acta, 2016, 220: 398-404

    [14] Huang J R, Ren H B, Liu X S, Li X X, Shim J J. Facile synthesis of porous TiO2 nanospheres and their photocatalytic properties. Superlattices and Microstructures, 2015, 81: 16-25

    [15] Ma J, Ren W H, Zhao J, Yang H L. Growth of TiO2 nanoflowers photoanode for dye-sensitized solar cells. Journal of Alloys and Compounds, 2017, 692: 1004-1009

    [16] Lai L L, Wen W, Fu B, Qian X Y, Liu J B, Wu J M. Surface roughening and top opening of single crystalline TiO2 nanowires for enhanced photocatalytic activity. Materials & Design, 2016, 108: 581-589

    [17] Yao Y C, Dai X R, Hu X Y, Huang S Z, Jin Z. Synthesis of Agdecorated porous TiO2 nanowires through a sunlight induced reduction method and its enhanced photocatalytic activity. Applied Surface Science, 2016, 387: 469-476

    [18] Bakar S A, Byzynski G, Ribeiro C. Synergistic effect on the photocatalytic activity of N-doped TiO2 nanorods synthesised by novel route with exposed (110) facet. Journal of Alloys and Compounds, 2016, 666: 38-49

    [19] Myung S T, Takahashi N, Komaba S, Yoon C S, Sun Y K, Amine K, Yashiro H. Nanostructured TiO2 and its application in lithium-ion storage. Advanced Functional Materials, 2011, 21(17): 3231-3241

    [20] Tsai C C, Teng H S. Structural features of nanotubes synthesized from NaOH treatment on TiO2 with different post-treatments. Chemistry of Materials, 2006, 18(2): 367-373

    [21] Zhang J, Wu B, Huang L H, Liu P L, Wang X Y, Lu Z D, Xu G L, Zhang E P, Wang H B, Kong Z, Xi J, Ji Z. Anatase nano-TiO2 with exposed curved surface for high photocatalytic activity. Journal of Alloys and Compounds, 2016, 661: 441-447

    [22] Fan Z H, Meng F M, Zhang M, Wu Z Y, Sun Z Q, Li A X. Solvothermal synthesis of hierarchical TiO2 nanostructures with tunable morphology and enhanced photocatalytic activity. Applied Surface Science, 2016, 360: 298-305

    Yonglun TANG, Haibo REN, Jiarui HUANG. Synthesis of porous TiO2 nanowires and their photocatalytic properties[J]. Frontiers of Optoelectronics, 2017, 10(4): 395
    Download Citation