• High Power Laser Science and Engineering
  • Vol. 9, Issue 1, 010000e9 (2021)
Bo Han1、2, Feilu Wang3、4、5、*, David Salzmann3, Jiayong Zhong1、6, and Gang Zhao3、4
Author Affiliations
  • 1Department of Astronomy, Beijing Normal University, Beijing100875, China
  • 2College of Physics and Electronic Engineering, Qilu Normal University, Jinan250200, China
  • 3CAS Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing100101, China
  • 4School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing101408, China
  • 5Graduate School of China Academy of Engineering Physics, Beijing100196, China
  • 6Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai200240, China
  • show less
    DOI: 10.1017/hpl.2020.49 Cite this Article Set citation alerts
    Bo Han, Feilu Wang, David Salzmann, Jiayong Zhong, Gang Zhao. Emission mechanism for the silicon He-α lines in a photoionization experiment[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e9 Copy Citation Text show less

    Abstract

    In this paper, we present a reanalysis of the silicon He-$\mathrm{\alpha}$ X-ray spectrum emission in Fujioka et al.’s 2009 photoionization experiment. The computations were performed with our radiative-collisional code, RCF. The central ingredients of our computations are accurate atomic data, inclusion of satellite lines from doubly excited states and accounting for the reabsorption of the emitted photons on their way to the spectrometer. With all these elements included, the simulated spectrum turns out to be in good agreement with the experimental spectrum.
    $$\begin{align}\frac{{\rm d}N_{i,j}}{{\rm d}t}&=\sum \limits_p\sum \limits_{m=i,i\pm 1}\sum \limits_n{N}_{m,n}{R}_{m,n\to i,j}^p\nonumber\\&\quad-{N}_{i,j}\sum \limits_d\sum \limits_{m=i,i\pm 1}\sum \limits_n{R}_{i,j\to m,n}^d\nonumber\\&=0,\end{align}$$((1))

    View in Article

    $$\begin{align}{\mathcal{P}}_p=\frac{\sum \limits_{m=i,i\pm 1}\sum \limits_n{N}_{m,n}{R}_{m,n\to i,j}^p}{\sum \limits_q\sum \limits_{m=i,i\pm 1}\sum \limits_n{N}_{m,n}{R}_{m,n\to i,j}^q},\end{align}$$((2))

    View in Article

    $$\begin{align}{\mathcal{D}}_d=\frac{\sum \limits_{m=i,i\pm 1}\sum \limits_n{R}_{i,j\to m,n}^d}{\sum \limits_q\sum \limits_{m=i,i\pm 1}\sum \limits_n{R}_{i,j\to m,n}^q}.\end{align}$$((3))

    View in Article

    $$\begin{align}G(t)=\exp \left[-\frac{{\left(t-{t}_0\right)}^2}{2{\sigma}^2}\right],\end{align}$$((4))

    View in Article

    $$\begin{align}&{N}_{i,j}\left(t+\Delta t\right)={N}_{i,j}(t)+\Delta {N}_{i,j}(t)\nonumber\\&\quad{}={N}_{i,j}(t)+\Delta t\cdot \Big[\sum \limits_p\sum \limits_{m=i,i\pm 1}\sum \limits_n{N}_{m,n}(t){R}_{m,n\to i,j}^p(t)\nonumber\\&\qquad-{N}_{i,j}(t)\sum \limits_d\sum \limits_{m=i,i\pm 1}\sum \limits_n{R}_{i,j\to m,n}^d(t)\Big],\end{align}$$((5))

    View in Article

    $$\begin{align}{I}_{\mathrm{abs}}\left(\lambda \right)={I}_0\left(\lambda \right)T\left(\lambda \right),\end{align}$$((6))

    View in Article

    $$\begin{align}T\left(\lambda \right)=\frac{1-{e}^{-\tau \left(\lambda \right)}}{\tau \left(\lambda \right)}.\end{align}$$((7))

    View in Article

    $$\begin{align}\tau \left(\lambda \right)={\tau}_0\phi \left(\lambda \right),\end{align}$$((8))

    View in Article

    $$\begin{align}{\tau}_0=\frac{\sqrt{\pi }{e}^2{\lambda}_{\mathrm{c}}{f}_{\lambda }}{m_{\mathrm{e}}\kern0.1em c}{\left(\frac{M_{\mathrm{i}}}{2{T}_{\mathrm{i}}}\right)}^{1/2}{N}_{\mathrm{l}},\end{align}$$((9))

    View in Article

    $$\begin{align}G=\frac{I_{\mathrm{F}}+{I}_{\mathrm{I}}}{I_{\mathrm{R}}},\end{align}$$((10))

    View in Article

    $$\begin{align}R=\frac{I_\mathrm{F}}{I_\mathrm{I}},\end{align}$$((11))

    View in Article

    Bo Han, Feilu Wang, David Salzmann, Jiayong Zhong, Gang Zhao. Emission mechanism for the silicon He-α lines in a photoionization experiment[J]. High Power Laser Science and Engineering, 2021, 9(1): 010000e9
    Download Citation