• Journal of the Chinese Ceramic Society
  • Vol. 51, Issue 10, 2553 (2023)
YANG Zhengyu1,2,3,*, ZHAO Fujian4, DU Chang1,2,3, and CHEN Xiaofeng1,2,3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • 4[in Chinese]
  • show less
    DOI: Cite this Article
    YANG Zhengyu, ZHAO Fujian, DU Chang, CHEN Xiaofeng. Preparation and Applications of Micro-Nano Bioactive Glass[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2553 Copy Citation Text show less
    References

    [1] BOCCACCINI A R, BRAUER D S, HUPA L. Bioactive glasses: Fundamentals, technology and applications[M]. Cambridge: Royal Society of Chemistry, 2016.

    [2] KIM J J, EL-FIQI A, KIM H W. Synergetic cues of bioactive nanoparticles and nanofibrous structure in bone scaffolds to stimulate osteogenesis and angiogenesis[J]. ACS Appl Mater Interfaces, 2017, 9(3): 2059-2073.

    [4] KARGOZAR S, BAINO F, HAMZEHLOU S, et al. Bioactive glasses: sprouting angiogenesis in tissue engineering[J]. Trends Biotechnol, 2018, 36(4): 430-444.

    [6] ZHANG W, ZHAO F J, HUANG D Q, et al. Strontium-substituted submicrometer bioactive glasses modulate macrophage responses for improved bone regeneration[J]. ACS Appl Mater Interfaces, 2016, 8(45): 30747-30758.

    [7] ZHAO F J, LEI B, LI X, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes[J]. Biomaterials, 2018, 178: 36-47.

    [8] LUO M, ZHAO F J, LIU L, et al. IFN-γ/SrBG composite scaffolds promote osteogenesis by sequential regulation of macrophages from M1 to M2[J]. J Mater Chem B, 2021, 9(7): 1867-1876.

    [9] SHI M, ZHAO F J, SUN L Y, et al. Bioactive glass activates VEGF paracrine signaling of cardiomyocytes to promote cardiac angiogenesis[J]. Mater Sci Eng C Mater Biol Appl, 2021, 124: 112077.

    [10] YANG Z, ZHAO F J, ZHANG W, et al. Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: From anti-tumor to repairing bone defects[J]. Chem Eng J, 2021, 419: 129520.

    [11] THOMPSON K H, ORVIG C. Boon and bane of metal ions in medicine[J]. Science, 2003, 300(5621): 936-939.

    [12] HOPPE A, GLDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32(11): 2757-2774.

    [14] BRUNNER T J, GRASS R N, STARK W J. Glass and bioglass nanopowders by flame synthesis[J]. Chem Commun, 2006(13): 1384-1386.

    [16] ZHENG K, LU M, RUTKOWSKI B, et al. ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties[J]. J Mater Chem B, 2016, 4(48): 7936-7949.

    [17] TSIGKOU O, LABBAF S, STEVENS M M, et al. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells[J]. Adv Healthc Mater, 2014, 3(1): 115-125.

    [20] DE OLIVEIRA A A R, DE SOUZA D A, DIAS L L S, et al. Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications[J]. Biomed Mater, 2013, 8(2): 025011.

    [22] MARTNEZ A, IZQUIERDO-BARBA I, VALLET-REG M. Bioactivity of a CaO-SiO2 binary glasses system[J]. Chem Mater, 2000, 12(10): 3080-3088.

    [23] SALTMAN P D, STRAUSE L G. The role of trace minerals in osteoporosis[J]. J Am Coll Nutr, 1993, 12(4): 384-389.

    [24] BEATTIE J H, AVENELL A. Trace element nutrition and bone metabolism[J]. Nutr Res Rev, 1992, 5(1): 167-188.

    [25] O’DONNELL S, CRANNEY A, WELLS G A, et al. Strontium ranelate for preventing and treating postmenopausal osteoporosis[J]. Cochrane Database Syst Rev, 2006(3): CD005326.

    [26] HUANG M, HILL R G, RAWLINSON S C F. Strontium (Sr) elicits odontogenic differentiation of human dental pulp stem cells (hDPSCs): A therapeutic role for Sr in dentine repair?[J]. Acta Biomater, 2016, 38: 201-211.

    [27] BONNELYE E, CHABADEL A, SALTEL F, et al. Dual effect of strontium ranelate: Stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro[J]. Bone, 2008, 42(1): 129-138.

    [28] LIU J, RAWLINSON S C, HILL R G, et al. Strontium-substituted bioactive glasses in vitro osteogenic and antibacterial effects[J]. Dent Mater, 2016, 32(3): 412-422.

    [29] SCHINDELER A, LITTLE D G. Ras-MAPK signaling in osteogenic differentiation: Friend or foe?[J]. J Bone Miner Res, 2006, 21(9): 1331-1338.

    [30] YANG F, YANG D Z, TU J E, et al. Strontium enhances osteogenic differentiation of mesenchymal stem cells and in vivo bone formation by activating Wnt/catenin signaling[J]. Stem Cells, 2011, 29(6): 981-991.

    [31] CHEN Y, WHETSTONE H C, LIN A C, et al. Beta-catenin signaling plays a disparate role in different phases of fracture repair: Implications for therapy to improve bone healing[J]. PLoS Med, 2007, 4(7): e249.

    [32] VERBERCKMOES S C, DE BROE M E, D’HAESE P C. Dose-dependent effects of strontium on osteoblast function and mineralization[J]. Kidney Int, 2003, 64(2): 534-543.

    [33] GENTLEMAN E, FREDHOLM Y C, JELL G, et al. The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro[J]. Biomaterials, 2010, 31(14): 3949-3956.

    [35] ZHAO S C, LI L, WANG H, et al. Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model[J]. Biomaterials, 2015, 53: 379-391.

    [36] EROL M M, MOURINO V, NEWBY P, et al. Copper-releasing, boron-containing bioactive glass-based scaffolds coated with alginate for bone tissue engineering[J]. Acta Biomater, 2012, 8(2): 792-801.

    [37] CHITRA S, BARGAVI P, BALASUBRAMANIAM M, et al. Impact of copper on in-vitro biomineralization, drug release efficacy and antimicrobial properties of bioactive glasses[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110598.

    [38] ROMERO-SANCHEZ L B, MAR-BEFFA M, CARRILLO P, et al. Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model[J]. Acta Biomater, 2018, 68: 272-285.

    [39] RYAN E J, RYAN A J, GONZALEZ-VAZQUEZ A, et al. Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo[J]. Biomaterials, 2019, 197: 405-416.

    [40] SKALLEVOLD H E, ROKAYA D, KHURSHID Z, et al. Bioactive glass applications in dentistry[J]. Int J Mol Sci, 2019, 20(23): 5960.

    [41] IVIGLIA G, KARGOZAR S, BAINO F. Biomaterials, current strategies, and novel nano-technological approaches for periodontal regeneration[J]. J Funct Biomater, 2019, 10(1): 3.

    [42] EL-FIQI A, MANDAKHBAYAR N, JO S B, et al. Nanotherapeutics for regeneration of degenerated tissue infected by bacteria through the multiple delivery of bioactive ions and growth factor with antibacterial/angiogenic and osteogenic/odontogenic capacity[J]. Bioact Mater, 2021, 6(1): 123-136.

    [43] XIAO J S, ZHU Y X, HUDDLESTON S, et al. Copper metal-organic framework nanoparticles stabilized with folic acid improve wound healing in diabetes[J]. ACS Nano, 2018, 12(2): 1023-1032.

    [44] XIAO J S, CHEN S Y, YI J, et al. A cooperative copper metal-organic framework-hydrogel system improves wound healing in diabetes[J]. Adv Funct Mater, 2017, 27(1): 1604872.

    [45] WANG X J, CHENG F, LIU J, et al. Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application[J]. Acta Biomater, 2016, 46: 286-298.

    [46] PHILIPS N, SAMUEL P, PARAKANDI H, et al. Beneficial regulation of fibrillar collagens, heat shock protein-47, elastin fiber components, transforming growth factor-β1, vascular endothelial growth factor and oxidative stress effects by copper in dermal fibroblasts[J]. Connect Tissue Res, 2012, 53(5): 373-378.

    [47] LI J Y, ZHAI D, LV F, et al. Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing[J]. Acta Biomater, 2016, 36: 254-266.

    [48] HESSEL C M, PATTANI V P, RASCH M, et al. Copper selenide nanocrystals for photothermal therapy[J]. Nano Lett, 2011, 11(6): 2560-2566.

    [49] LI K C, CHU H C, LIN Y, et al. PEGylated copper nanowires as a novel photothermal therapy agent[J]. ACS Appl Mater Interfaces, 2016, 8(19): 12082-12090.

    [50] LIU K, LIU K, LIU J C, et al. Copper chalcogenide materials as photothermal agents for cancer treatment[J]. Nanoscale, 2020, 12(5): 2902-2913.

    [51] YU Q Q, HAN Y M, WANG X C, et al. Copper silicate hollow microspheres-incorporated scaffolds for chemo-photothermal therapy of melanoma and tissue healing[J]. ACS Nano, 2018, 12(3): 2695-2707.

    [52] CACCIOTTI I. Bivalent cationic ions doped bioactive glasses: The influence of magnesium, zinc, strontium and copper on the physical and biological properties[J]. J Mater Sci, 2017, 52(15): 8812-8831.

    [53] BALAMURUGAN A, BALOSSIER G, KANNAN S, et al. Development and in vitro characterization of sol-gel derived CaO-P2O5-SiO2-ZnO bioglass[J]. Acta Biomater, 2007, 3(2): 255-262.

    [54] NESCAKOVA Z, ZHENG K, LIVERANI L, et al. Multifunctional zinc ion doped sol-gel derived mesoporous bioactive glass nanoparticles for biomedical applications[J]. Bioact Mater, 2019, 4: 312-321.

    [55] PREZ R, SANCHEZ-SALCEDO S, LOZANO D, et al. Osteogenic effect of ZnO-mesoporous glasses loaded with osteostatin[J]. Nanomaterials, 2018, 8(8): 592.

    [56] ZHAO R, SHI L F, GU L, et al. Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: In vitro bioactivity and antibacterial activity[J]. J Appl Biomater Funct Mater, 2021, 19: 22808000211040910.

    [57] ATKINSON I, ANGHEL E M, PREDOANA L, et al. Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol-gel derived CaO-P2O5-SiO2 bioactive glasses[J]. Ceram Int, 2016, 42(2): 3033-3045.

    [58] PUNJ S, SINGH J, SINGH K. Ceramic biomaterials: Properties, state of the art and future prospectives[J]. Ceram Int, 2021, 47(20): 28059-28074.

    [59] BAI X, LIU W J, XU L J, et al. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass[J]. J Mater Chem B, 2021, 9(12): 2885-2898.

    [60] BOSE S, FIELDING G, TARAFDER S, et al. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics[J]. Trends Biotechnol, 2013, 31(10): 594-605.

    [61] KARGOZAR S, MILAN P B, AMOUPOUR M, et al. Osteogenic potential of magnesium (Mg)-doped multicomponent bioactive glass: In vitro and in vivo animal studies[J]. Materials, 2022, 15(1): 318.

    [62] SUN Y, LIN J, LI L L, et al. In vitro and in vivo study of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair[J]. Biomed Mater, 2022, 17(2): 025018.

    [63] SCHROEDER H A, TIPTON I H, NASON A P. Trace metals in man: Strontium and Barium[J]. J Chronic Dis, 1972, 25(9): 491-517.

    [64] YAZDANPANAH A, MOZTARZADEH F. Synthesis and characterization of barium-iron containing magnetic bioactive glasses: The effect of magnetic component on structure and in vitro bioactivity[J]. Colloids Surf B Biointerfaces, 2019, 176: 27-37.

    [65] BIZARI D, YAZDANPANAH A, MOZTARZADEH F. BaO-Fe2O3 containing bioactive glasses: A potential candidate for cancer hyperthermia[J]. Mater Chem Phys, 2020, 241: 122439.

    [66] MAJUMDAR S, HIRA S K, TRIPATHI H, et al. Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity[J]. Ceram Int, 2021, 47(5): 7143-7158.

    [67] VADERA N, ASHOKAN A, GOWD G S, et al. Manganese doped nano-bioactive glass for magnetic resonance imaging[J]. Mater Lett, 2015, 160: 335-338.

    [68] NAWAZ Q, REHMAN M A U, BURKOVSKI A, et al. Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications[J]. J Mater Sci Mater Med, 2018, 29(5): 1-13.

    [69] WESTHAUSER F, WILKESMANN S, NAWAZ Q, et al. Effect of manganese, zinc, and copper on the biological and osteogenic properties of mesoporous bioactive glass nanoparticles[J]. J Biomed Mater Res, 2021, 109(8): 1457-1467.

    [70] WESTHAUSER F, WILKESMANN S, NAWAZ Q, et al. Osteogenic properties of manganese-doped mesoporous bioactive glass nanoparticles[J]. J Biomed Mater Res A, 2020, 108(9): 1806-1815.

    [71] RAYMAN M P. Selenium and human health[J]. Lancet, 2012, 379(9822): 1256-1268.

    [72] AMARAL A F S, PORTA M, SILVERMAN D T, et al. Pancreatic cancer risk and levels of trace elements[J]. Gut, 2012, 61(11): 1583-1588.

    [73] WANG X, ZHANG Y, MA Y Y, et al. Selenium-containing mesoporous bioactive glass particles: Physicochemical and drug delivery properties[J]. Ceram Int, 2016, 42(2): 3609-3617.

    [74] HU M, FANG J, ZHANG Y, et al. Design and evaluation a kind of functional biomaterial for bone tissue engineering: Selenium/mesoporous bioactive glass nanospheres[J]. J Colloid Interface Sci, 2020, 579: 654-666.

    [75] PALZA H, ESCOBAR B, BEJARANO J, et al. Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol-gel method[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33(7): 3795-3801.

    [76] EL-RASHIDY A A, WALY G, GAD A, et al. Preparation and in vitro characterization of silver-doped bioactive glass nanoparticles fabricated using a sol-gel process and modified Stber method[J]. J Non Cryst Solids, 2018, 483: 26-36.

    [77] DIZAJ S M, LOTFIPOUR F, BARZEGAR-JALALI M, et al. Antimicrobial activity of the metals and metal oxide nanoparticles[J]. Mater Sci Eng C Mater Biol Appl, 2014, 44: 278-284.

    [78] TAUTKUS S, ISHIKAWA K, RAMANAUSKAS R, et al. Zinc and chromium co-doped calcium hydroxyapatite: Sol-gel synthesis, characterization, behaviour in simulated body fluid and phase transformations[J]. J Solid State Chem, 2020, 284: 121202.

    [79] BRENNAN S A, FHOGHL C N, DEVITT B M, et al. Silver nanoparticles and their orthopaedic applications[J]. Bone Joint J, 2015, 97-B(5): 582-589.

    [80] GHOSH R, DAS S, MALLICK S P, et al. A review on the antimicrobial and antibiofilm activity of doped hydroxyapatite and its composites for biomedical applications[J]. Mater Today Commun, 2022, 31: 103311.

    [81] GODOY-GALLARDO M, ECKHARD U, DELGADO L M, et al. Antibacterial approaches in tissue engineering using metal ions and nanoparticles: From mechanisms to applications[J]. Bioact Mater, 2021, 6(12): 4470-4490.

    [82] SHI C, GAO J Y, WANG M, et al. Ultra-trace silver-doped hydroxyapatite with non-cytotoxicity and effective antibacterial activity[J]. Mater Sci Eng C, 2015, 55: 497-505.

    [83] ZHANG Y, HU M, WANG X, et al. Design and evaluation of europium containing mesoporous bioactive glass nanospheres: Doxorubicin release kinetics and inhibitory effect on osteosarcoma MG 63 cells[J]. Nanomaterials, 2018, 8(11): 961.

    [84] HUANG S S, KANG X J, CHENG Z Y, et al. Electrospinning preparation and drug delivery properties of Eu3+/Tb3+ doped mesoporous bioactive glass nanofibers[J]. J Colloid Interface Sci, 2012, 387(1): 285-291.

    [85] XUE Y M, DU Y Z, YAN J, et al. Monodisperse photoluminescent and highly biocompatible bioactive glass nanoparticles for controlled drug delivery and cell imaging[J]. J Mater Chem B, 2015, 3(18): 3831-3839.

    [86] SHI M C, XIA L G, CHEN Z T, et al. Europium-doped mesoporous silica nanosphere as an immune-modulating osteogenesis/angiogenesis agent[J]. Biomaterials, 2017, 144: 176-187.

    [87] DE SIQUEIRA L, CAMPOS T M B, CAMARGO S E A, et al. Structural, crystallization and cytocompatibility evaluation of the 45S5 bioglass-derived glass-ceramic containing niobium[J]. J Non Cryst Solids, 2021, 555: 120629.

    [88] BALBINOT G S, LEITUNE V C B, PONZONI D, et al. Bone healing with niobium-containing bioactive glass composition in rat femur model: A micro-CT study[J]. Dent Mater, 2019, 35(10): 1490-1497.

    [89] ZHAO F J, YANG Z, XIONG H C, et al. A bioactive glass functional hydrogel enhances bone augmentation via synergistic angiogenesis, self-swelling and osteogenesis[J]. Bioact Mater, 2023, 22: 201-210.

    [90] Bronner F. Chapter 25-Metals in Bone: Aluminum, Boron, Cadmium, Chromium, Lanthanum, Lead, Silicon, and Strontium[M]// BILEZIKIAN J P, RAISZ L G, MARTIN T J. Principles of Bone Biology (3rd Ed). San Diego; Academic Press. 2008: 515-31.

    [91] ZHU D Y, LU B, YANG Q H, et al. Lanthanum-doped mesoporous bioglasses/chitosan composite scaffolds enhance synchronous osteogenesis and angiogenesis for augmented osseous regeneration[J]. Chem Eng J, 2021, 405: 127077.

    [92] EL-MELIEGY E, FARAG M M, EL-KADY A M, et al. Evaluation of solubility and cytotoxicity of lanthanum-doped phosphate glasses nanoparticles for drug delivery applications[J]. J Non Cryst Solids, 2017, 475: 59-70.

    [93] YAMAGATA N. The concentration of common cesium and rubidium in human body[J]. J Radiat Res, 1962, 3: 9-30.

    [94] OUYANG S H, ZHENG K, HUANG Q L, et al. Synthesis and characterization of rubidium-containing bioactive glass nanoparticles[J]. Mater Lett, 2020, 273: 127920.

    [95] CELARDO I, PEDERSEN J Z, TRAVERSA E, et al. Pharmacological potential of cerium oxide nanoparticles[J]. Nanoscale, 2011, 3(4): 1411-1420.

    [96] MAHAPATRA C, SINGH R K, LEE J H, et al. Nano-shape varied cerium oxide nanomaterials rescue human dental stem cells from oxidative insult through intracellular or extracellular actions[J]. Acta Biomater, 2017, 50: 142-153.

    [97] NAGANUMA T, TRAVERSA E. The effect of cerium valence states at cerium oxide nanoparticle surfaces on cell proliferation[J]. Biomaterials, 2014, 35(15): 4441-4453.

    [98] NETHI S K, NANDA H S, STEELE T W J, et al. Functionalized nanoceria exhibit improved angiogenic properties[J]. J Mater Chem B, 2017, 5(47): 9371-9383.

    [99] ZHENG K, TORRE E, BARI A, et al. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities[J]. Mater Today Bio, 2020, 5: 100041.

    YANG Zhengyu, ZHAO Fujian, DU Chang, CHEN Xiaofeng. Preparation and Applications of Micro-Nano Bioactive Glass[J]. Journal of the Chinese Ceramic Society, 2023, 51(10): 2553
    Download Citation