• High Power Laser and Particle Beams
  • Vol. 34, Issue 2, 026009 (2022)
Pengtao Fu1, Mingliang Dai1, Zhaowen Zhu2, Xinhua Liu2, Lan Fang2, and Chunyan Xu2
Author Affiliations
  • 1China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, China
  • 2Nuclear and Radiation Safety Center,Ministry of Ecology and Environment,Beijing 100082, China
  • show less
    DOI: 10.11884/HPLPB202234.210399 Cite this Article
    Pengtao Fu, Mingliang Dai, Zhaowen Zhu, Xinhua Liu, Lan Fang, Chunyan Xu. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34(2): 026009 Copy Citation Text show less
    Quarter reactor JMCT model
    Fig. 1. Quarter reactor JMCT model
    Comparison between calculated and measured values of tritium production by neutron activation
    Fig. 2. Comparison between calculated and measured values of tritium production by neutron activation
    Comparison between calculated and measured values of tritium production (1% released from fuel)
    Fig. 3. Comparison between calculated and measured values of tritium production (1% released from fuel)
    Comparison between calculated and measured values of tritium production of Daya Bay Nuclear Power Plant
    Fig. 4. Comparison between calculated and measured values of tritium production of Daya Bay Nuclear Power Plant
    Schematic diagram of SNS in double-layer stainless steel cladding
    Fig. 5. Schematic diagram of SNS in double-layer stainless steel cladding
    Variation of tritium discharge from French 900 MWe PWR
    Fig. 6. Variation of tritium discharge from French 900 MWe PWR
    regionnuclear reaction
    fuel$ {\text{U/Pu}} + {}_0^1{\text{n}}\xrightarrow{{}}{\text{FP1 + FP2}} + {}_1^3{\text{H}} $
    boric acid(primary coolant)$ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{({\text{n,2α}} )}}}{\text{2}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{2}}^{\text{4}}{\text{He}} $$ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{5}}^{{\text{10}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{2}}^{\text{4}}{\text{He}} $$ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    $ {}_{\text{5}}^{{\text{11}}}{\text{B + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}} $$ {}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li + }}_{ - 1}^{\text{0}}{\text{e}} $$ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    lithium hydroxide(primary coolant)$ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    deuterium(primary coolant)$ {}_{\text{1}}^{\text{2}}{\text{H + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,γ )}}}}{}_{\text{1}}^{\text{3}}{\text{H}} $
    antimony-beryllium in SNS$ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{2}}^{\text{6}}{\text{He}} $$ {}_{\text{2}}^{\text{6}}{\text{He}}\xrightarrow{{\text{β }}}{}_{\text{3}}^{\text{6}}{\text{Li}} $$ {}_{\text{3}}^{\text{6}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,α )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{4}}^{\text{9}}{\text{Be + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,T)}}}}{}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{1}}^{\text{3}}{\text{H}} $$ {}_{\text{3}}^{\text{7}}{\text{Li + }}{}_{\text{0}}^{\text{1}}{\text{n}}\xrightarrow{{{\text{(n,nα )}}}}{}_{\text{2}}^{\text{4}}{\text{He + }}{}_{\text{0}}^{\text{1}}{\text{n + }}{}_{\text{1}}^{\text{3}}{\text{H}} $
    Table 1. Nuclear reaction of tritium production in PWR
    originrelative contribution/%
    EPRAP1000VVER
    fuel03122
    boric acid and lithium hydroxide836977
    SNS170
    total100100100
    Table 2. Relative contribution of expected tritium production in different reactor
    Pengtao Fu, Mingliang Dai, Zhaowen Zhu, Xinhua Liu, Lan Fang, Chunyan Xu. Study of annual tritium discharge in pressurized water reactor based on historical data[J]. High Power Laser and Particle Beams, 2022, 34(2): 026009
    Download Citation