• Optoelectronics Letters
  • Vol. 20, Issue 8, 460 (2024)
Zhihan LI1,2, Wei HE2,*, and Shaode and LI2
Author Affiliations
  • 1Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science and Technology University, Beijing 100192, China
  • 2Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science and Technology University, Beijing 100192, China
  • show less
    DOI: 10.1007/s11801-024-3164-8 Cite this Article
    LI Zhihan, HE Wei, and LI Shaode. Simulation of random fiber Bragg grating array in polarization-maintaining fiber based on photonic localization effect[J]. Optoelectronics Letters, 2024, 20(8): 460 Copy Citation Text show less
    References

    [1] QIU Z C, SUN R, TENG Y T, et al. Design and test of a low frequency fiber Bragg grating acceleration sensor with double tilted cantilevers[J]. Optics communications,2022, 507: 127663.

    [2] WANG Q Y, TONG X L, ZHANG C, et al. Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage[J]. Chinese physics B, 2022, 31(8): 084204.

    [3] SAI Y Z, JIANG M S, SUI Q, et al. FBG sensor array-based-low speed impact localization system on composite plate[J]. Journal of modern optics, 2016, 63(5): 462-467.

    [4] LI R F, HU Z J, LI H T, et al. All-fiber laser-self-mixing interferometer with adjustable injection intensity for remote sensing of 40 km[J]. Journal of lightwave technology,2022, 40(14): 4863-4870.

    [5] IP E, FANG J, LI Y W, et al. Distributed fiber sensor network using telecom cables as sensing media: technology advancements and applications[J]. Journal of optical communications and networking, 2022, 14(1): A61-A68.

    [6] YU X K, SONG N F, SONG J M. A novel method for simultaneous measurement of temperature and strain based on EFPI/FBG[J]. Optics communications, 2020, 459: 125020.

    [7] SAHOTA J K, GUPTA N, DHAWAN D. Fiber Bragg grating sensors for monitoring of physical parameters: a comprehensive review[J]. Optical engineering, 2020, 59(6): 060901-060901.

    [8] ZHANG L, LU P, ZHOU Z, et al. High-efficiency random fiber laser based on strong random fiber grating for MHz ultrasonic sensing[J]. IEEE sensors journal, 2020, 20(11): 5885-5892.

    [9] AZMI A N, WAN ISMAIL W Z, ABU HASSAN H, et al. Review of open cavity random lasers as laser-based sensors[J]. ACS sensors, 2022, 7(4): 914-928.

    [10] AHMAD H, OOI S I, TIU Z C. 100 GHz free spectral range-tunable multi-wavelength fiber laser using single–multi–single mode fiber interferometer[J]. Applied physics B, 2019, 125: 1-11.

    [11] DENG J C, HAN M M, XU Z E, et al. Stable and low-threshold random fiber laser via Anderson localization[J].Optics express, 2019, 27(9): 12987-12997.

    [12] WANG L L, DONG X Y, SHUM P P, et al. Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber[J]. Journal of lightwave technology,2014, 33(1): 95-99.

    [13] LIZáRRAGA N, PUENTE N P, CHAIKINA E I, et al. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback[J]. Optics express, 2009, 17(2): 395-404.

    [14] ZHANG L, XU Y, LU P, et al. Multi-wavelength Brillouin random fiber laser via distributed feedback from a random fiber grating[J]. Journal of lightwave technology, 2018, 36(11): 2122-2128.

    [15] POPOV S M, BUTOV O V, BAZAKUTSA A P, et al. Random lasing in a short Er-doped artificial Rayleigh fiber[J]. Results in physics, 2020, 16: 102868.

    [16] JI Q, ZONG S, YANG J. Application and development trend of laser technology in military field[C]//ICOSM 2020: Optoelectronic Science and Materials, December 8, 2020, Hefei, China. Washington: SPIE, 2020, 11606: 32-40.

    [17] SHIVAKOTI I, KIBRIA G, CEP R, et al. Laser surface texturing for biomedical applications: a review[J]. Coatings, 2021, 11(2): 124.

    [18] ABAIE B, MOBINI E, KARBASI S, et al. Random lasing in an Anderson localizing optical fiber[J]. Light: science & applications, 2017, 6(8): e17041-e17041.

    [19] HE W, ZHAO J Q, DONG M L, et al. Wavelength-switchable erbium-doped fiber laser incorporating fiber Bragg grating array fabricated by infrared femtosecond laser inscription[J]. Optics & laser technology,2020, 127: 106026.

    [20] LU L D, XU Y J, DONG M L, et al. Birefringent interferometer cascaded with PM-FBG for multi-parameter testing[J]. IEEE sensors journal, 2021, 22(1): 338-343.

    [21] IZRAILEV F M, KROKHIN A A, MAKAROV N M. Anomalous localization in low-dimensional systems with correlated disorder[J]. Physics reports, 2012, 512(3): 125-254.

    [22] RUFFIN P B. Stress and temperature effects on the performance of polarization-maintaining fibers[C]// Polarimetry: Radar, Infrared, Visible, Ultraviolet, and X-ray, October 1, 1990, Huntsville, AL, USA. Washington:SPIE, 1990, 1317: 324-332.

    [23] LV B, ZHANG W, HUANG W, et al. Switchable and compact dual-wavelength random fiber laser based on random Bragg grating array[J]. Optical fiber technology, 2022, 70: 102858.

    [24] CHEN C, WANG H Y, LU P, et al. Self-injection locking of a low-noise erbium-doped random fiber laser by a random fiber grating ring[J]. Optics letters, 2023, 48(9): 2389-2392.

    [25] HU J, WANG Y F, XING Z K, et al. Stable and ultra-narrow linewidth random fiber laser based on random fiber Bragg gratings[C]//CLEO: QELS_Fundamental Science, May 10-15, 2020, Washington DC, USA. Washington: Optica Publishing Group, 2020: JW2B.4.

    LI Zhihan, HE Wei, and LI Shaode. Simulation of random fiber Bragg grating array in polarization-maintaining fiber based on photonic localization effect[J]. Optoelectronics Letters, 2024, 20(8): 460
    Download Citation