• Optical Instruments
  • Vol. 45, Issue 5, 44 (2023)
Guangcai ZHANG1、2 and Xi CHEN1、*
Author Affiliations
  • 1Institute of Photonic Chip, University of Shanghai for Science and Technology, Shanghai 200093, China
  • 2School of Optical-Electronic and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • show less
    DOI: 10.3969/j.issn.1005-5630.2023.005.006 Cite this Article
    Guangcai ZHANG, Xi CHEN. High cycle-stability supercapacitors with Ti3C2Tx MXene/graphene oxide composite electrodes[J]. Optical Instruments, 2023, 45(5): 44 Copy Citation Text show less
    References

    [1] LIN J, PENG Z W, LIU Y Y, et al. Laser-induced porous graphene films from commercial polymers[J]. Nature Communications, 5, 5714(2014).

    [2] ZHANG C F, MCKEON L, KREMER M P, et al. Additive-free MXene inks and direct printing of micro-supercapacitors[J]. Nature Communications, 10, 1795(2019).

    [3] SALANNE M, ROTENBERG B, NAOI K, et al. Efficient storage mechanisms for building better supercapacitors[J]. Nature Energy, 1, 16070(2016).

    [4] KO Y, KWON M, BAE W K, et al. Flexible supercapacitor electrodes based on real metal-like cellulose papers[J]. Nature Communications, 8, 536(2017).

    [5] EL-KADY M F, KANER R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage[J]. Nature Communications, 4, 1475(2013).

    [6] KORKMAZ S, KARIPER İ A. Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications[J]. Journal of Energy Storage, 27, 101038(2020).

    [7] YANG L, ZHENG W, ZHANG P, et al. Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors[J]. Electrochimica Acta, 300, 349-356(2019).

    [8] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two‐dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 23, 4248-4253(2011).

    [9] GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature, 516, 78-81(2014).

    [10] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two‐dimensional materials[J]. Advanced Materials, 26, 992-1005(2014).

    [11] YAN P T, ZHANG R J, JIA J, et al. Enhanced supercapacitive performance of delaminated two-dimensional titanium carbide/carbon nanotube composites in alkaline electrolyte[J]. Journal of Power Sources, 284, 38-43(2015).

    [12] GAO Y P, WANG L B, LI Z Y, et al. Electrochemical performance of Ti3C2 supercapacitors in KOH electrolyte[J]. Journal of Advanced Ceramics, 4, 130-134(2015).

    [13] POMERANTSEVA E, GOGOTSI Y. Two-dimensional heterostructures for energy storage[J]. Nature Energy, 2, 17089(2017).

    [14] VAHIDMOHAMMADI A, LIANG W T, MOJTABAVI M, et al. 2D titanium and vanadium carbide MXene heterostructures for electrochemical energy storage[J]. Energy Storage Materials, 41, 554-562(2021).

    [15] SONG J J, GUO X, ZHANG J Q, et al. Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 7, 6507-6513(2019).

    [16] RADHA N, KANAKARAJ A, MANOHAR H M, et al. Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel[J]. Applied Surface Science, 481, 892-899(2019).

    [17] MING X, GUO A K, ZHANG Q, et al. 3D macroscopic graphene oxide/MXene architectures for multifunctional water purification[J]. Carbon, 167, 285-295(2020).

    [18] ZHAO S, ZHANG H B, LUO J Q, et al. Highly electrically conductive three-dimensional Ti3C2TX MXene/reduced graphene oxide hybrid aerogels with excellent electromagnetic interference shielding performances[J]. ACS Nano, 12, 11193-11202(2018).

    [19] CAI W R, MA W J, CHEN W H, et al. Microwave-assisted reduction and sintering to construct hybrid networks of reduced graphene oxide and MXene for electromagnetic interference shielding[J]. Composites Part A:Applied Science and Manufacturing, 157, 106928(2022).

    [20] SIKDAR A, DUTTA P, DEB S K, et al. Spontaneous three-dimensional self-assembly of MXene and graphene for impressive energy and rate performance pseudocapacitors[J]. Electrochimica Acta, 391, 138959(2021).

    [21] GUO B Y, TIAN J, YIN X L, et al. A binder-free electrode based on Ti3C2Tx-rGO aerogel for supercapacitors[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 595, 124683(2020).

    [22] LI Z Y, CHEN G R, DENG J, et al. Creating sandwich-like Ti3C2/TiO2/rGO as anode materials with high energy and power density for Li-ion hybrid capacitors[J]. ACS Sustainable Chemistry & Engineering, 7, 15394-15403(2019).

    [23] KUMAR P, DIVYA N, RATAN J K. Study on the physico-chemical properties of reduced graphene oxide with different degrees of reduction temperature[J]. Journal of the Iranian Chemical Society, 18, 201-211(2021).

    [24] ZHANG L J, OR S W. Self-assembled three-dimensional macroscopic graphene/MXene-based hydrogel as electrode for supercapacitor[J]. APL Materials, 8, 091101(2020).

    Guangcai ZHANG, Xi CHEN. High cycle-stability supercapacitors with Ti3C2Tx MXene/graphene oxide composite electrodes[J]. Optical Instruments, 2023, 45(5): 44
    Download Citation