[1] Kruth J P, Leu M C and Nakagawa T 1998 Progress in additive manufacturing and rapid prototyping CIRP Ann. 47 525–40
[2] Ashley S 1991 Rapid prototyping systems Mech. Eng.113 34–43
[3] Tumbleston J R et al 2015 Continuous liquid interface production of 3D objects Science 347 1349–52
[4] Walker D A, Hedrick J L and Mirkin C A 2019 Rapid,large-volume, thermally controlled 3D printing using a mobile liquid interface Science366 360–4
[5] Xu Y, Zhu Y Z, Sun Y F, Jin J and Chen Y 2021 A vibration-assisted separation method for constrained-surface-based stereolithography J. Manuf. Sci.Eng. 143 051008
[6] Xu Y, Mao H C, Liu C Y, Du Z Y, Yan W J, Yang Z Y,Partanen J and Chen Y 2023 Hopping light vat photopolymerization for multiscale fabrication Small 19 2205784
[7] Zhou C, Chen Y, Yang Z G and Khoshnevis B 2013 Digital material fabrication using mask-image-projection-based stereolithography Rapid Prototyp. J. 19 153–65
[8] Xu H, Chen S, Hu R Z, Hu M Q, Xu Y, Yoon Y and Chen Y 2023 Continuous vat photopolymerization for optical lens fabrication Small 19 2300517
[9] Xu Y, Qi F J, Mao H C, Li S W, Zhu Y Z, Gong J W, Wang L,Malmstadt N and Chen Y 2022 In-situ transfer vat photopolymerization for transparent microfluidic device fabrication Nat. Commun. 13 918
[10] Zhao C X, Jariwala A S and Rosen D W 2016 Real time monitoring of exposure controlled projection lithography with time-varying scanning points Proc. 26th Annual Int.Solid Freeform Fabrication Symp.—An Additive Manufacturing Conf. (University of Texas at Austin)
[11] Zhao X Y, Wang J M, Zhao C X, Jariwala A and Rosen D W 2016 Experimental implementation and investigation of real-time metrology for exposure controlled projection lithography Proc. 26th Annual Int. Solid Freeform Fabrication Symp.—An Additive Manufacturing Conf.(University of Texas at Austin)
[12] Milton L A, Viglione M S, Ong L J Y, Nordin G P and Toh Y C 2023 Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications Lab Chip 23 3537–60
[13] Shao G B, Hai R H and Sun C 2020 3D printing customized optical lens in minutes Adv. Opt. Mater. 8 1901646
[14] Chen X F, Liu W Z, Dong B Q, Lee J, Ware H O T, Zhang H F and Sun C 2018 High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness Adv. Mater. 30 1705683
[15] Yuan C, Kowsari K, Panjwani S, Chen Z C, Wang D, Zhang B,Ng C J X, Alvarado P V Y and Ge Q 2019 Ultrafast three-dimensional printing of optically smooth microlens arrays by oscillation-assisted digital light processing ACS Appl. Mater. Interfaces 11 40662–8
[16] Lai H W et al 2020 Consensus statement on robotic mastectomy—expert panel from international endoscopic and robotic breast surgery symposium (IERBS) 2019 Ann.Surg. 271 1005–12
[17] Odent J, Baleine N, Biard V, Dobashi Y, Vancaeyzeele C,Nguyen G T M, Madden J D W, Plesse C and Raquez J M 2023 3D-printed stacked ionic assemblies for iontronic touch sensors Adv. Funct. Mater. 33 2210485
[18] Paral S K, Lin D Z, Cheng Y L, Lin S C and Jeng J Y 2023 A review of critical issues in high-speed vat photopolymerization Polymers 15 2716
[19] Shan Y J, Krishnakumar A, Qin Z H and Mao H C 2022 Reducing lateral stair-stepping defects in liquid crystal display-based vat photopolymerization by defocusing the image pattern Addit. Manuf. 52 102653
[20] Vaezi M and Chua C K 2011 Effects of layer thickness and binder saturation level parameters on 3D printing process Int. J. Adv. Manuf. Technol. 53 275–84
[21] Gao W, Zhang Y B, Ramanujan D, Ramani K, Chen Y, Williams C B, Wang C C L, Shin Y C, Zhang S and Zavattieri P D 2015 The status, challenges, and future of additive manufacturing in engineering Comput.-Aided Des.69 65–89
[22] Chen H W, Lee J H, Lin B Y, Chen S and Wu S T 2018 Liquid crystal display and organic light-emitting diode display:present status and future perspectives Light Sci. Appl.7 17168
[23] Mao H C, Kwok T H, Chen Y and Wang C C L 2019 Adaptive slicing based on efficient profile analysis Comput.-Aided Des. 107 89–101
[24] Pan Y Y and Chen Y 2016 Meniscus process optimization for smooth surface fabrication in Stereolithography Addit.Manuf. 12 321–33
[25] Namgung H, Kaba A M, Oh H, Jeon H, Yoon J, Lee H and Kim D 2022 Quantitative determination of 3D-printing and surface-treatment conditions for direct-printed microfluidic devices BioChip J. 16 82–98
[26] Heinrich A, Rank M, Maillard P, Suckow A, Bauckhage Y,R??ler P, Lang J, Shariff F and Pekrul S 2016 Additive manufacturing of optical components Adv. Opt. Technol.5 293–301
[27] Zhou C, Chen Y and Waltz R A 2009 Optimized mask image projection for solid freeform fabrication J. Manuf. Sci. Eng.131 061004
[28] Zhou C and Chen Y 2012 Additive manufacturing based on optimized mask video projection for improved accuracy and resolution J. Manuf. Process.14 107–18
[29] Gong H, Beauchamp M, Perry S, Woolley A T and Nordin G P 2015 Optical approach to resin formulation for 3D printed microfluidics RSC Adv. 5 106621–32
[30] Zhou C, Xu H and Chen Y 2021 Spatiotemporal projection-based additive manufacturing: a data-driven image planning method for subpixel shifting in a split second Adv. Intell. Syst. 3 2100079
[31] Gao X Y, Yang J K, Wu J G, Xin X D, Li Z M, Yuan X T,Shen X Y and Dong S X 2020 Piezoelectric actuators and motors: materials, designs, and applications Adv. Mater.Technol. 5 1900716
[32] Liu Y F, Shan J J and Gabbert U 2015 Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications Smart Mater. Struct.24 015012
[33] Alam F, Elsherif M, AlQattan B, Salih A, Lee S M,Yetisen A K, Park S and Butt H 2021 3D printed contact lenses ACS Biomater. Sci. Eng. 7 794–803
[34] Pan Y Y, He H Y, Xu J and Feinerman A 2017 Study of separation force in constrained surface projection stereolithography Rapid Prototyp. J.23 353–61