[1] Chen Y Q, Kang Y Q, Zhao Y et al. A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards[J]. Journal of Energy Chemistry, 59, 83-99(2021).
[2] Wang Q S, Mao B B, Stoliarov S I et al. A review of lithium ion battery failure mechanisms and fire prevention strategies[J]. Progress in Energy and Combustion Science, 73, 95-131(2019).
[3] Gachot G, Grugeon S, Jimenez-Gordon I et al. Gas chromatography/Fourier transform infrared/mass spectrometry coupling: a tool for Li-ion battery safety field investigation[J]. Anal Methods, 6, 6120-6124(2014).
[4] Bai L, Smuts J, Walsh P et al. Permanent gas analysis using gas chromatography with vacuum ultraviolet detection[J]. Journal of Chromatography A, 1388, 244-250(2015).
[5] Berkes B B, Jozwiuk A, Sommer H et al. Simultaneous acquisition of differential electrochemical mass spectrometry and infrared spectroscopy data for in situ characterization of gas evolution reactions in lithium-ion batteries[J]. Electrochemistry Communications, 60, 64-69(2015).
[6] Nedjalkov A, Meyer J, Köhring M et al. Toxic gas emissions from damaged lithium ion batteries: analysis and safety enhancement solution[J]. Batteries, 2, 5(2016).
[7] Larsson F, Andersson P, Blomqvist P et al. Toxic fluoride gas emissions from lithium-ion battery fires[J]. Scientific Reports, 7, 10018(2017).
[8] Michalak B, Sommer H, Mannes D et al. Gas evolution in operating lithium-ion batteries studied in situ by neutron imaging[J]. Scientific Reports, 5, 15627(2015).
[9] Finegan D P, Scheel M, Robinson J B et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway[J]. Nature Communications, 6, 6924(2015).
[10] Wang P Y, Chen W G, Wang J X et al. Multigas analysis by cavity-enhanced Raman spectroscopy for power transformer diagnosis[J]. Analytical Chemistry, 92, 5969-5977(2020).
[11] Li Y F, Liu Z W, Zhang T Y et al. Development and application of near-Infrared laser carbon dioxide gas sensor system[J]. Acta Optica Sinica, 40, 0514003(2020).
[12] Frosch T, Keiner R, Michalzik B et al. Investigation of gas exchange processes in peat bog ecosystems by means of innovative Raman gas spectroscopy[J]. Analytical Chemistry, 85, 1295-1299(2013).
[13] Rong S, Liu H S, Zhong Y et al. Enhancement of raman spectra based on optical trapping of gold nanocubes[J]. Acta Optica Sinica, 41, 1730003(2021).
[14] Wang Z F, Huang W, Li Z X et al. Progress and prospects of fiber gas laser sources (Ⅰ): based on stimulated Raman scattering[J]. Chinese Journal of Lasers, 48, 0401008(2021).
[15] Ma X R, Cheng H, Hou J W et al. Detection of breast cancer based on novel porous silicon Bragg reflector surface-enhanced Raman spectroscopy-active structure[J]. Chinese Optics Letters, 18, 051701(2020).
[16] Duh Y S, Sun Y J, Lin X et al. Characterization on thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicles: a review[J]. Journal of Energy Storage, 41, 102888(2021).
[17] Said A O, Lee C, Stoliarov S I. Experimental investigation of cascading failure in 18650 lithium ion cell arrays: impact of cathode chemistry[J]. Journal of Power Sources, 446, 227347(2020).
[18] Zaghib K, Dubé J, Dallaire A et al. Enhanced thermal safety and high power performance of carbon-coated LiFePO4 olivine cathode for Li-ion batteries[J]. Journal of Power Sources, 219, 36-44(2012).
[19] Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells[J]. Journal of Power Sources, 113, 81-100(2003).
[20] Arai H, Tsuda M, Saito K et al. Thermal reactions between delithiated lithium nickelate and electrolyte solutions[J]. Journal of the Electrochemical Society, 149, A401-A406(2002).
[21] Kong W H, Li H, Huang X J et al. Gas evolution behaviors for several cathode materials in lithium-ion batteries[J]. Journal of Power Sources, 142, 285-291(2005).
[22] Yang H, Shen X D. Dynamic TGA-FTIR studies on the thermal stability of lithium/graphite with electrolyte in lithium-ion cell[J]. Journal of Power Sources, 167, 515-519(2007).
[23] Wang Q S, Sun J H, Yao X L et al. Thermal stability of LiPF6/EC + DEC electrolyte with charged electrodes for lithium ion batteries[J]. Thermochimica Acta, 437, 12-16(2005).
[24] Shin J S, Han C H, Jung U H et al. Effect of Li2CO3 additive on gas generation in lithium-ion batteries[J]. Journal of Power Sources, 109, 47-52(2002).
[25] Kumai K, Miyashiro H, Kobayashi Y et al. Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 81/82, 715-719(1999).
[26] Koch S, Fill A, Birke K P. Comprehensive gas analysis on large scale automotive lithium-ion cells in thermal runaway[J]. Journal of Power Sources, 398, 106-112(2018).
[27] Han X, Huang Z X, Chen X D et al. On-line multi-component analysis of gases for mud logging industry using data driven Raman spectroscopy[J]. Fuel, 207, 146-153(2017).
[28] Zong J[D]. Study on spectral methodologies for quality assessment of infant formula powder(2019).
[29] Zhao C P[D]. Study on the risk of thermal runaway deflagration of ternary lithium-ion batteries in confined space(2021).
[30] Zhao C P, Wang T H, Huang Z et al. Experimental study on thermal runaway of fully charged and overcharged lithium-ion batteries under adiabatic and side-heating test[J]. Journal of Energy Storage, 38, 102519(2021).
[31] Liao Z H, Zhang S, Li K et al. Hazard analysis of thermally abused lithium-ion batteries at different state of charges[J]. Journal of Energy Storage, 27, 101065(2020).