[1] S. H.Glenzer, R.Redmer. X-ray Thomson scattering in high energy density plasmas. Rev. Mod. Phys., 81, 1625-1663(2009).
[2] K.Appel, V.Cerantola, A.Comley, A.Descamps, J. H.Eggert, L. B.Fletcher, D. O.Gericke, S. H.Glenzer, S.G?de, G.Gregori, J. B.Hastings, O.Humphries, O.Karnbach, A.Lazicki, R.Loetzsch, E. E.McBride, D.McGonegle, G.Monaco, B. K.Ofori-Okai, C. A. J.Palmer, C.Plueckthun, T. R.Preston, R.Redmer, D. G.Senesky, C.Strohm, I.Uschmann, J. S.Wark, T. G.White, L.Wollenweber, U.Zastrau. An approach for the measurement of the bulk temperature of single crystal diamond using an X-ray free electron laser. Sci. Rep., 10, 14564(2020).
[3] B.Bachmann, R. A.Baggott, M.Bethkenhagen, M. P.B?hme, D. A.Chapman, L.Divol, T.D?ppner, R. W.Falcone, L. B.Fletcher, D. O.Gericke, S. H.Glenzer, D.Kraus, O. L.Landen, M. J.MacDonald, P.Neumayer, R.Redmer, A. M.Saunders, M.Sch?rner, P. A.Sterne, J.Vorberger, B. B. L.Witte, A.Yi. Observing the onset of pressure-driven K-shell delocalization. Nature, 618, 270-275(2023).
[4] A.Amouretti, K.Appel, E.Brambrink, V.Cerantola, D.Chekrygina, L. B.Fletcher, S.G?de, M.Harmand, N. J.Hartley, S. P.Hau-Riege, Z.He, B.Heuser, O. S.Humphries, D.Kraus, J.Lütgert, M.Makita, P. T.May, A.Pelka, T. R.Preston, C.Qu, K.Ramakrishna, D.Ranjan, S.Schumacher, A. K.Schuster, M.?míd, M. G.Stevenson, T.Toncian, K.Voigt, J.Vorberger, U.Zastrau, M.Zhang. Toward using collective x-ray Thomson scattering to study C–H demixing and hydrogen metallization in warm dense matter conditions. Phys. Plasmas, 30, 052702(2023).
[5] J. T.Delitz, A.-C.Dippel, H.Franz, H.-P.Liermann, H.Schulte-Schrepping, O. H.Seeck, P.Walter. Beamline P02.1 at PETRA III for high-resolution and high-energy powder diffraction. J. Synchrotron Radiat., 22, 675-687(2015).
[6] S. E.Finnegan, G.Garbarino, S. G.Macleod, D.McGonegle, M. I.McMahon, E. J.Pace, M. G.Stevenson, C. V.Storm, C. W.Wilson. Pressure-induced bcc-rhombohedral phase transition in vanadium metal. Phys. Rev. B, 103, 134103(2021).
[7] D.Chekrygina, T.D?ppner, R. W.Falcone, L. B.Fletcher, S.Frydrych, E.Galtier, D. O.Gericke, S. H.Glenzer, E.Granados, N. J.Hartley, Y.Inubushi, N.Kamimura, K.Katagiri, D.Kraus, J.Lütgert, M. J.MacDonald, A. J.MacKinnon, T.Matsuoka, E. E.McBride, K.Miyanishi, I.Nam, P.Neumayer, N.Ozaki, A.Pak, A.Ravasio, M.R?del, A. M.Saunders, A. K.Schuster, M. G.Stevenson, K.Sueda, P.Sun, T.Togashi, T.van Driel, K.Voigt, J.Vorberger, M.Yabashi, T.Yabuuchi. Indirect evidence for elemental hydrogen in laser-compressed hydrocarbons. Phys. Rev. Res., 5, L022023(2023).
[8] H.Hirai, T.Kawamura, K.Konagai, T.Yagi, Y.Yamamoto. Polymerization and diamond formation from melting methane and their implications in ice layer of giant planets. Phys. Earth Planet. Inter., 174, 242-246(2009).
[9] R.Chau, S.Hamel, W. J.Nellis. Chemical processes in the deep interior of Uranus. Nat. Commun., 2, 203(2011).
[10] T.D?ppner, R. W.Falcone, L. B.Fletcher, S.Frydrych, E.Galtier, E. J.Gamboa, D. O.Gericke, S. H.Glenzer, E.Granados, N. J.Hartley, D.Kraus, M. J.MacDonald, A. J.MacKinnon, E. E.McBride, I.Nam, P.Neumayer, A.Pak, M.Roth, A. M.Saunders, A. K.Schuster, P.Sun, T.van Driel, J.Vorberger. Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions. Nat. Astron., 1, 606-611(2017).
[11] A.Bergermann, M.Bethkenhagen, D.Chekrygina, T. E.Cowan, A.Descamps, M.French, E.Galtier, A. E.Gleason, G. D.Glenn, S. H.Glenzer, N. J.Hartley, Z.He, J.-A.Hernandez, B.Heuser, O. S.Humphries, Y.Inubushi, N.Kamimura, K.Katagiri, D.Khaghani, D.Kraus, H. J.Lee, J.Lütgert, E. E.McBride, K.Miyanishi, B.Nagler, B.Ofori-Okai, N.Ozaki, S.Pandolfi, C.Qu, D.Ranjan, A.Ravasio, R.Redmer, M.R?del, C.Schoenwaelder, A. K.Schuster, M. G.Stevenson, K.Sueda, T.Togashi, T.Vinci, K.Voigt, J.Vorberger, M.Yabashi, T.Yabuuchi, L. M. V.Zinta. Diamond formation kinetics in shock-compressed C–H–O samples recorded by small-angle x-ray scattering and x-ray diffraction. Sci. Adv., 8, eabo0617(2022).
[12] V.Bagnoud, P.Neumayer, A. R.Piriz, S. A.Piriz, N. A.Tahir. Production of diamond using intense heavy ion beams at the FAIR facility and application to planetary physics. Sci. Rep., 13, 1459(2023).
[13] Y. M.Gupta, S. M.Sharma, S. J.Turneaure, T. J.Volz. Role of graphite crystal structure on the shock-induced formation of cubic and hexagonal diamond. Phys. Rev. B, 101, 224109(2020).
[14] A.Becker, D. E.Bliss, K. R.Cochrane, M. P.Desjarlais, M. D.Knudson, R. W.Lemke, T. R.Mattsson, R.Redmer, M. E.Savage. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 348, 1455-1460(2015).
[15] V.Bagnoud, A.Bla?evi?, W.Cayzac, A.Frank, D. O.Gericke, G.Gregori, D.Kraus, A.Ortner, A.Otten, F.Roth, M.Roth, G.Schaumann, D.Schumacher, K.Siegenthaler, J.Vorberger, F.Wagner, K.Wünsch. Probing the complex ion structure in liquid carbon at 100 GPa. Phys. Rev. Lett., 111, 255501(2013).
[16] B.Bachmann, B.Barbrel, T.D?ppner, R. W.Falcone, L. B.Fletcher, S.Frydrych, E. J.Gamboa, M.Gauthier, D. O.Gericke, S. H.Glenzer, S.G?de, E.Granados, G.Gregori, J.Helfrich, D.Kraus, H. J.Lee, B.Nagler, P.Neumayer, A.Ravasio, M.Roth, G.Schaumann, W.Schumaker, J.Vorberger. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite. Nat. Commun., 7, 10970(2016).
[17] V.Bagnoud, A.Blazevic, V. E.Fortov, D. O.Gericke, A.Golubev, D. H. H.Hoffmann, D.Kraus, I. V.Lomonosov, V.Mintsev, S.Neff, P.Neumayer, A. R.Piriz, R.Redmer, O.Rosmej, M.Roth, T.Schenkel, K.Schoenberg, B.Sharkov, N. A.Tahir, D.Varentsov, Y.Zhao. High-energy-density-science capabilities at the facility for Antiproton and ion research. Phys. Plasmas, 27, 043103(2020).
[18] T.Evans, P. F.James. A study of the transformation of diamond to graphite. Proc. R. Soc. London, Ser. A, 277, 260-269(1964).
[19] G.Davies, T.Evans. Graphitization of diamond at zero pressure and at a high pressure. Proc. R. Soc. London, Ser. A, 328, 413-427(1972).
[20] A.Antoine, F.Dorchies, R.Falcone, J.Gaudin, N. J.Hartley, P.Heimann, H.H?ppner, I.Inoue, Y.Inubushi, K. J.Kapcia, H. J.Lee, V.Lipp, P.Martinez, N.Medvedev, F.Tavella, V.Tkachenko, S.Toleikis, M.Yabashi, T.Yabuuchi, J.Yamada, B.Ziaja. Non-thermal structural transformation of diamond driven by x-rays. Struct. Dyn., 10, 054502(2023).
[21] B.Aradi, T.Frauenheim, V.Lipp, M.Stransky, V.Tkachenko, B.Ziaja. Density functional tight binding approach utilized to study x-ray-induced transitions in solid materials. Sci. Rep., 12, 1551(2022).
[22] T.Burian, J.Chalupsky, S.Dastjani-Farahani, J.Gaudin, V.Hájková, M.Harmand, H. O.Jeschke, L.Juha, M.Jurek, D.Klinger, J.Krzywinski, R. A.Loch, N.Medvedev, S.Moeller, M.Nagasono, C.Ozkan, K.Saksl, H.Sinn, R.Sobierajski, P.Sovák, K.Tiedtke, S.Toleikis, M.Toufarová, T.Tschentscher, V.Vorlí?ek, L.Vy?ín, H.Wabnitz, B.Ziaja. Photon energy dependence of graphitization threshold for diamond irradiated with an intense XUV FEL pulse. Phys. Rev. B, 88, 060101(2013).
[23] F.Capotondi, T.Golz, H.H?ppner, Y.Kai, M.Manfredda, N.Medvedev, E.Pedersoli, M. J.Prandolini, N.Stojanovic, T.Tanikawa, F.Tavella, U.Teubner, V.Tkachenko, S.Toleikis, B.Ziaja. Soft x-ray induced femtosecond solid-to-solid phase transition. High Energy Density Phys., 24, 22-27(2017).
[24] M.Artuso, F.Bachmair, L.B?ni, M.Bartosik, V.Bellini, V.Belyaev, B.Bentele, E.Berdermann, P.Bergonzo, A.Bes, J.-M.Brom, M.Bruzzi, M.Cerv, C.Chau, G.Chiodini, D.Chren, V.Cindro, G.Claus, J.Collot, S.Costa, J.Cumalat, R.D’Alessandro, A.Dabrowski, W.de Boer, B.Dehning, D.Dobos, W.Dulinski, V.Eremin, R.Eusebi, G.Forcolin, J.Forneris, H.Frais-K?lbl, K.Gan, M.Gastal, M.Goffe, J.Goldstein, A.Golubev, L.Gonella, A.Gori?ek, L.Graber, E.Grigoriev, J.Grosse-Knetter, M.Guthoff, I.Haughton, D.Hidas, D.Hits, M.Hoeferkamp, T.Hofmann, J.Hosslet, J.-Y.Hostachy, F.Hügging, H.Jansen, J.Janssen, H.Kagan, K.Kanxheri, G.Kasieczka, R.Kass, F.Kassel, M.Kis, G.Kramberger, S.Kuleshov, A.Lacoste, S.Lagomarsino, A.Lo Giudice, C.Maazouzi, I.Mandic, C.Manfredotti, C.Mathieu, N.McFadden, G.McGoldrick, M.Menichelli, M.Miku?, A.Morozzi, J.Moss, R.Mountain, S.Murphy, A.Oh, P.Olivero, G.Parrini, D.Passeri, M.Pauluzzi, H.Pernegger, R.Perrino, F.Picollo, M.Pomorski, R.Potenza, A.Quadt, A.Re, G.Riley, S.Roe, M.Sapinski, M.Scaringella, S.Schnetzer, T.Schreiner, S.Sciortino, A.Scorzoni, S.Seidel, L.Servoli, A.Sfyrla, G.Shimchuk, S.Smith, B.Sopko, V.Sopko, S.Spagnolo, S.Spanier, K.Stenson, R.Stone, C.Sutera, A.Taylor, M.Traeger, W.Trischuk, W.Trischuk, D.Tromson, C.Tuve, L.Uplegger, J.Velthuis, N.Venturi, E.Vittone, S.Wagner, R.Wallny, J.Wang, P.Weilhammer, J.Weingarten, C.Weiss, T.Wengler, N.Wermes, M.Yamouni, M.Zavrtanik. Diamond particle detectors for high energy physics. Nucl. Part. Phys. Proc., 273–275, 1023-1028(2016).
[25] C.B?htz, A.Benad, C.Brabetz, T.Cowan, T.D?ppner, D. J.Erb, A.Eychmüller, S.Facsko, R. W.Falcone, L. B.Fletcher, S.Frydrych, G. C.Ganzenmüller, D. O.Gericke, S. H.Glenzer, J.Grenzer, N. J.Hartley, U.Helbig, S.Hiermaier, R.Hübner, B.Klemmed, D.Kraus, A.Laso Garcia, H. J.Lee, J.Lütgert, M. J.MacDonald, E. E.McBride, P.Neumayer, A.Pak, A.Pelka, I.Prencipe, A.Prosvetov, A.Rack, A.Ravasio, R.Redmer, D.Reemts, M.R?del, A. M.Saunders, M.Schoelmerich, D.Schumacher, A. K.Schuster, P.Sun, M.Tomut, S. J.Turner, K.Voigt, J.Vorberger, A.Zettl, M.Zhang. Recovery of release cloud from laser shock-loaded graphite and hydrocarbon targets: In search of diamonds. J. Phys. D: Appl. Phys., 56, 025301(2022).
[26] V.Bagnoud, K.Blaum, A.Blazevic, A.Br?uning-Demian, M.Durante, F.Herfurth, M.Lestinsky, Y.Litvinov, S.Neff, R.Pleskac, S.Schippers, R.Schuch, D.Severin, T.St?hlker, A.Tauschwitz, C.Trautmann, D.Varentsov, E.Widmann. APPA at FAIR: From fundamental to applied research. Nucl. Instrum. Methods Phys. Res., Sect. B, 365, 680-685(2015).
[27] V.Bagnoud, R.Belikov, P.Hesselbach, O.Humphries, D.Kraus, B.Lindqvist, J.Lütgert, Zs.Major, P.Neumayer, D.Riley, G.Schaumann, A.Tauschwitz, D.Varentsov, K.Weyrich, B.Winkler, X.Yu, B.Zielbauer. Platform for combined heavy-ion/high-energy laser experiments. (unpublished)(2024).
[28] V.Bagnoud, D.Beck, C.Brabetz, U.Eisenbarth, S.G?tte, P.Hesselbach, J.Hornung, P.Kewes, S.Kunzer, Zs.Major, M.Malki, D.Neidherr, P.Neumayer, J. B.Ohland, D.Reemts, S.Roeder, D.Schumacher, A.Tauschwitz, K.Weyrich, B.Zielbauer, Y.Zobus. High-energy laser facility PHELIX at GSI: Latest advances and extended capabilities. High Power Laser Sci. Eng(2024).
[29] J.Biersack, J. F.Ziegler, M.Ziegler. SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B, 268, 1818-1823(2010).
[30] L.v Hámos. Röntgenspektroskopie und Abbildung mittels gekrümmter Kristallreflektoren. I. Geometrisch‐optische Betrachtungen. Ann. Phys., 409, 716-724(1933).
[31] J.Chihara. Interaction of photons with plasmas and liquid metals-photoabsorption and scattering. J. Phys.: Condens. Matter, 12, 231-247(2000).
[32] C.Blancard, G.Faussurier, S. H.Glenzer, G.Gregori, S.Kuhlbrodt, O. L.Landen, S. M.Pollaine, R.Redmer, P.Renaudin, F. J.Rogers. Electronic structure measurements of dense plasmas. Phys. Plasmas, 11, 2754-2762(2004).
[33] R. W.James. The Optical Principles of the Diffraction Of X-Rays(1962).
[34] D. O.Gericke, S. H.Glenzer, G.Gregori, M. M.Günther, K.Harres, R.Heathcote, A. L.Kritcher, N. L.Kugland, B.Li, M.Makita, J.Mithen, D.Neely, C.Niemann, A.Otten, A.Pelka, D.Riley, M.Roth, G.Schaumann, M.Schollmeier, A.Tauschwitz, J.Vorberger. Ultrafast melting of carbon induced by intense proton beams. Phys. Rev. Lett., 105, 265701(2010).
[35] L.Pauling, J.Sherman. Screening constants for many-electron atoms(1932).
[36] M.Bethkenhagen, T.D?ppner, L. B.Fletcher, S. H.Glenzer, D.Kraus, R.Redmer, M.Sch?rner. X-ray Thomson scattering spectra from density functional theory molecular dynamics simulations based on a modified Chihara formula. Phys. Rev. E, 107, 065207(2023).
[37] R.Campbell, I.Golovkin, J.MacFarlane, T.Mehlhorn, B.Oliver, D.Welch, P.Woodruff. Simulation of the ionization dynamics of aluminum irradiated by intense short-pulse lasers. Proc. Inertial Fusion Sciences and Applications 2003, 457(2004).
[38] J.Bradbury, R.Frostig, P.Hawkins, M. J.Johnson, C.Leary, D.Maclaurin, G.Necula, A.Paszke, J.VanderPlas, S.Wanderman-Milne, Q.Zhang. JAX: Composable transformations of Python + NumPy programs(2018).
[39] K.Falk, X.Pan, M.?míd. X-ray spectrometer simulation code with a detailed support of mosaic crystals. Comput. Phys. Commun., 262, 107811(2021).
[40] C.Fonnesbeck, J.Salvatier, T. V.Wiecki. Probabilistic programming in Python using PyMC3. Peer J. Comput. Sci., 2, e55(2016).
[41] A.Fasso, A.Ferrari, J.Ranft, P.Sala. FLUKA: A Multi-Particle Transport Code(2005).
[42] T.B?hlen, F.Cerutti, M.Chin, A.Fassò, A.Ferrari, A.Mairani, P.Ortega, P.Sala, G.Smirnov, V.Vlachoudis. The FLUKA code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets, 120, 211-214(2014).
[43] A.Higginbotham, W. J.Murphy, N.Park, J. S.Wark. Molecular dynamics simulations of the Debye–Waller effect in shocked copper. Phys. Rev. B, 78, 014109(2008).
[44] A.Amouretti, K.Appel, E.Brambrink, V.Cerantola, D.Chekrygina, T.D?ppner, R. W.Falcone, K.Falk, L. B.Fletcher, D. O.Gericke, S.G?de, M.Harmand, N. J.Hartley, S. P.Hau-Riege, L. G.Huang, O. S.Humphries, D.Kraus, M.Lokamani, M.Makita, A.Pelka, C.Prescher, T. R.Preston, K.Ramakrishna, A. K.Schuster, M.?míd, T.Toncian, K.Voigt, J.Vorberger, U.Zastrau, M.Zhang. Demonstration of an x-ray Raman spectroscopy setup to study warm dense carbon at the high energy density instrument of European XFEL. Phys. Plasmas, 28, 082701(2021).
[45] J.Hafner, G.Kresse. Ab initio molecular dynamics for liquid metals. Phys. Rev. B, 47, 558-561(1993).
[46] J.Hafner, G.Kresse. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B, 49, 14251-14269(1994).
[47] J.Furthmüller, G.Kresse. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54, 11169-11186(1996).
[48] N. D.Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev, 137, A1441-A1443(1965).
[49] P. E.Bl?chl. Projector augmented-wave method. Phys. Rev. B, 50, 17953-17979(1994).
[50] D.Joubert, G.Kresse. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758-1775(1999).
[51] K.Burke, M.Ernzerhof, J. P.Perdew. Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865-3868(1996).
[52] H. J.Monkhorst, J. D.Pack. Special points for Brillouin-zone integrations. Phys. Rev. B, 13, 5188-5192(1976).
[53] J.Behler, M.Parrinello. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett., 98, 146401(2007).
[54] J.Behler, C.Dellago, T.Morawietz, A.Singraber. How van der Waals interactions determine the unique properties of water. Proc. Natl. Acad. Sci. U. S. A., 113, 8368-8373(2016).
[55] J.Behler, C.Dellago, T.Morawietz, A.Singraber. Parallel multistream training of high-dimensional neural network potentials. J. Chem. Theory Comput., 15, 3075-3092(2019).
[56] A.Singraber. n2p2—A neural network potential package(2021).
[57] A.Anelli, J.Behler, M.Ceriotti, D.Giofré, G.Imbalzano, S.Klees. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J. Chem. Phys., 148, 241730(2018).
[58] H. M.Aktulga, R.Berger, D. S.Bolintineanu, W. M.Brown, P. S.Crozier, P. J.in ’t Veld, A.Kohlmeyer, S. G.Moore, T. D.Nguyen, S. J.Plimpton, R.Shan, M. J.Stevens, A. P.Thompson, J.Tranchida, C.Trott. LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun., 271, 108171(2022).
[59] M.French, R.Redmer, H. R.Rüter, M.Sch?rner. Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum to the hydrodynamic limit using neural network potentials. Phys. Rev. B, 105, 174310(2022).
[60] S.Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81, 511-519(1984).
[61] W. G.Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31, 1695-1697(1985).
[62] L. B.Hansen, K. W.Jacobsen, J. J.Mortensen. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B, 71, 035109(2005).
[63] J.Chen, M.Du?ak, J.Enkovaara, L.Ferrighi, J.Gavnholt, C.Glinsvad, V.Haikola, H.H?kkinen, B.Hammer, H. A.Hansen, K. W.Jacobsen, H. H.Kristoffersen, M.Kuisma, A. H.Larsen, L.Lehtovaara, M.Ljungberg, O.Lopez-Acevedo, G. K. H.Madsen, J. J.Mortensen, P. G.Moses, R. M.Nieminen, J. K.N?rskov, J.Ojanen, T.Olsen, V.Petzold, M.Puska, T. T.Rantala, N. A.Romero, C.Rostgaard, J.Schi?tz, J.Stausholm-M?ller, M.Strange, K. S.Thygesen, G. A.Tritsaris, M.Vanin, M.Walter. Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter, 22, 253202(2010).
[64] J.Bergmann Maronsson, P.Bjerre Jensen, J.Blomqvist, I. E.Castelli, R.Christensen, M.Du?ak, J.Friis, M. N.Groves, B.Hammer, C.Hargus, E. D.Hermes, A.Hjorth Larsen, K. W.Jacobsen, P. C.Jennings, J.J?rgen Mortensen, K.Kaasbjerg, J.Kermode, J. R.Kitchin, J.Kubal, E.Leonhard Kolsbjerg, S.Lysgaard, T.Maxson, T.Olsen, L.Pastewka, A.Peterson, C.Rostgaard, J.Schi?tz, O.Schütt, M.Strange, K. S.Thygesen, T.Vegge, L.Vilhelmsen, M.Walter, Z.Zeng. The atomic simulation environment—A Python library for working with atoms. J. Phys.: Condens. Matter, 29, 273002(2017).
[65] K. W.Jacobsen, J. J.Mortensen, K. S.Thygesen, J.Yan. Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces. Phys. Rev. B, 83, 245122(2011).
[66] B.Arnold, J.Fink, A.Fleszar, W.Hanke, M.Knupfer, S.Waidmann. Local-field effects and anisotropic plasmon dispersion in diamond. Phys. Rev. B, 61, 10149-10153(2000).
[67] T.Brox, P.Fischer, O.Ronneberger. U-net: Convolutional networks for biomedical image segmentation, 234-241(2015).
[68] L.Antiga, J.Bai, J.Bradbury, G.Chanan, S.Chilamkurthy, S.Chintala, A.Desmaison, Z.DeVito, L.Fang, N.Gimelshein, S.Gross, T.Killeen, A.Kopf, A.Lerer, Z.Lin, F.Massa, A.Paszke, M.Raison, B.Steiner, A.Tejani, H.Wallach, E.Yang, H.Wallach, H.Larochelle, A.Beygelzimer, Buc F.d’Alché, and E.Fox, H.Larochelle, H.Wallach, H.Larochelle, A.Beygelzimer, Buc F.d’Alché, and E.Fox, A.Beygelzimer, H.Wallach, H.Larochelle, A.Beygelzimer, Buc F.d’Alché, and E.Fox, F.d’Alché Buc, H.Wallach, H.Larochelle, A.Beygelzimer, Buc F.d’Alché, and E.Fox, E.Fox, H.Wallach, H.Larochelle, A.Beygelzimer, Buc F.d’Alché, and E.Fox, R.Garnett. PyTorch: An imperative style, high-performance deep learning library, 32, 8024-8035(2019).